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Take : Specific enthalpy of fusion of ice = 336 kd/kg
Specific heat of water = 4.187 kJ/kg. (Ams. 4.97, 10.9°C, 91.3 kg]

15, A vapour compression refrigerator circulates 4.5 kg of NH, per hour. Condensation take place at 30°C and
evaporation at — 15°C. There is no under-cooling of the refrigerant. The temperature after isentropic
compression is 75°C and specific heat of superheated vapour is 2.82 kJ/kg K. Determine :

(i} Co-efficient of performance.

(i£) Iee produced in kg per hour in the evaporator from water at 20°C and ice at 0°C. Take : Enthalpy of
fusion of ice = 336 kJ/kg, specific heat of water = 4.187 kd/kg.

{iii) The effective swept volume of the compressor in m%min.

Properties of ammonia :
Sat. temp. Enthalpy (k] /kg) Entropy (kJ/kg K) Volume (m? / kg)
(K)
hf hg 8¢ s, v, v,
303 323.1 1469 1.204 4.984 0.00168 0.111
258 112.3 1426 0.457 5.5649 0.00152 0.509

[Ans. 4.95, 682 kg/h, 2.2 m%min]
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Heat Transfer

15.1. Modes of heat transfer. 15.2. Heat transfer by conduction—Fourier’s law of heat conduction—
Thermal conductivity of materials—Thermal resistance (R, }—General heat conduction equation
in Cartesian coordinates—Heat conduction through plane and composite walls—Heat conduction
through a plane wall—Heat conduction through a composite wall—The overall heat-iransfer coef-
ficient—Heat conduction through hollow and composite cylinders—Heat conduction through a
hollow cylinder—Heat conduction through a composite cylinder—Heat conduction through hollow
and composite spheres—Heat conduction through hollow sphere—Heat conduction through a
composite sphere—Critical thickness of insulation—Insulation-General aspects—Critical thick-
ness of insulation. 15.3. Heat transfer by convection. 15.4, Heat exchangers—Introduction—Types
of heat exchangers—Heat exchanger analysis—Logarithmic mean temperature difference (LMTD}—
Logarithmic mean temperature difference for “parallel-flow™—lLogarithmic mean temperature
difference for “counter-flow”, 15.5. Heat transfer by radiation—Introduction—Surface emission
properties—Absorptivity, reflectivity and transmissivity—Concept of a black body—The Stefan-
Boltzmann law—XKirchhoff’s law—Planck’s law—Wien’s displacement law—Intensity of radiation
and Lambert’s cosine law—Intensity of radiation—Lambert’s cosine law-~Radiation exchange be-
tween black bodies separated by a non-absorbing medium. Highlights—Ohjective Type Ques-
tions—Theoretical Questions—Unsolved Examples.

15.1. MODES OF HEAT TRANSFER

“Heat transfer” which is defined as the transmission of energy from one region to another

as a result of temperature gradient takes place by the following three modes :
(i) Conduction ; (ii) Convection ; (tii) Radiation.

Heat transmission, in majority of real situations, occurs as a result of combinations of
these modes of heat transfer. Example : The water in a boiler shell receives its heat from the fire-
bed by conducted, convected and radiated heat from the fire to the shell, conducted heat through
the shell and conducted and convected heat from the inner shell wall, to the water. Heat always
flows in the direction of lower temperature.

The above three modes are similar in that a temperature differential must exist and the
heat exchange is in the direction of decreasing temperature ; each method, however, has different
controlling laws.

(i) Conduction. ‘Conduction’ is the transfer of heat from one part of a substance to
another part of the same substance, or from one substance to another in physical contact with it,
without appreciable displacement of molecules forming the substance.

In solids, the heat is conducted by the following #wo mechanisms :

(i) By lattice vibration (The faster moving molecules or atoms in the hottest part of a

body transfer heat by impacts some of their energy to adjacent molecules).

{ii) By transport of free electrons (Free electrons provide an energy flux in the direction
of deereasing temperature—For metals, especially good electrical conductors, the electronic
mechanism is responsible for the major portion of the heat flux except at low temperature).

In case of gases, the mechanisam of heat conduction is simple. The kinetic energy of a
molecule is a function of temperature. These molecules are in a continuous random motion ex-
changing energy and momentum. When a molecule from the high temperature region collides
with a molecule from the low temperature region, it loses energy by collisions.

778
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In liquids, the mechanism of heat is nearer to that of gases. However, the molecules are
more closely spaced and intermolecular forces come into play.

(i) Convection. ‘Convection’ is the transfer of heat within a fluid by mixing of one portion
of the fluid with another.

® Convection is possible only in a fluid medium and is directly linked with the transport

of medium. itself.

e Convection constitutes the macroform of the heat transfer since macroscopic particles

of a fluid moving in space cause the heat exchange.

e The effectiveness of heat transfer by convection depends largely upon the mixing mo-

tion of the fluid.

This mode of heat transfer is met with in situations where energy is transferred as heat to
a flowing fluid at any surface over which flow occurs. This mode is basically conduction in a very
thin fluid layer at the surface and then mixing caused by the flow. The heat flow depends on the
properties of fluid and is independent of the properties of the material of the surface. However, the
shape of the surface will influence the flow and hence the heat transfer.

Free or natural convection. Free or natural convection occurs where the fluid circulates
by virtue of the natural differences in densities of hot and cold fluids ; the denser portions of the
fluid move downward because of the greater force of gravity, as compared with the force on the
less dense.

Forced convection. When the work is done to blow or pump the fluid, it is said to be
forced convection.

(7ii) Radiation. ‘Radiation’ is the transfer of heat through space or matter by means other
than conduction or convection.

Radiation heat is thought of as electromagnetic waves or quanta (as convenient) an emana-
tion of the same nature as light and radio waves. All bodies radiate heat ; so a transfer of heat by
radiation occurs because hot body emits more heat than it receives and a cold body receives more
keat than it emits. Radiant energy (being electromagnetic radiation) requires no medium for
propagation and will pass through o vacuum.

Note. The rapidly oscillating molecules of the hot body produce electromagnetic waves in hypothetical
medium called ether. These waves are identical with light waves, radio waves and X-rays, differ from them only in
wavelength and travel with an approximate velocity of 3 x 10® m/s. These waves carry energy with them and
transfer it to the relatively slow-moving molecules of the cold bedy on which they happen to fall. The molecular
energy of the later increases and results in a rise of its temperature. Heat travelling by radiation is known as
radiant heat.

The properties of radiant heat in general, are similar to those of light. Some of the properties are :

(i) 1t does not require the presence of a material medium for its transmission.

(i1} Radiant heat can be reflected from the surfaces and obeys the ordinary laws of reflection.

(iii) It travels with velocity of light.

(iv)} Like light, it shows interference, diffraction and polarisation ete.

(v} It follows the law of inverse square.

The wavelength of heat radiations is longer than that of light waves, hence they are invisible to the eye.

15.2. HEAT TRANSFER BY CONDUCTION

15.2.1. Fourier's Law of Heat Conduction

Fourier'’s law of heat conduction is an empirical law based on observation and states as
follows :

“The rate of flow of heat through a simple homogeneous solid is directly proportional to
the area of the section at right angles to the direction of heat flow, and to change of temperature
with respect to the length of the path of the heat flow”.
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Mathematically, it can be represented by the equation :
dt
QA =
where, @ = Heat flow through a body per unit time (in watts), W,
A = Surface area of heat flow (perpendicular to the direction of flow), m?,

dit = Temperature difference of the faces of block (homogeneous solid) of thickness ‘dx’
through which heat flows,°C or K, and
dx = Thickness of body in the direction of flow, m,
dt

Thus, Q=-k. A Ir .(15.1)

where, & = Constant of proportionality and is known as thermal conductivity of the body.
The —ve sign of k [egn. (15.1)] is to take care of the decreasing temperature alongwith the

dt
direction of increasing thickness or the direction of heat flow. The temperature gradient de 18
always negative along positive x direction and therefore the value of @ becomes +ve.

Assumptions :

The following are the assumptions on which Fourier’s law is based :

. Conduction of heat takes place under steady state conditions.

. The heat flow is unidirectional.

. The temperatures gradient is constant and the temperature profile is linear.
. There is no internal heat generation.

. The beunding surfaces are isothermal in character.

. The material is homogeneous and isotropic (i.e., the value of thermal conductivity is
constant in oll directions).

(=T I - N U

Some essential features of Fourier's Law :

Following are some essential features of Fourier’s law :
1. It is applicable to all matter (may be solid, liquid or gas).
2. It is based on experimental evidence and cannot be derived from first principle.

3. It is a vector expression indicating that heat flow rate is in the direction of decreasing
temperature and is normal to an isotherm.

4. It helps to define thermal conductivity ‘%’ (transport property) of the medium through
which heat is conducted.

15.2.2. Thermal Conductivity of Materials
Fr (15.1) h k Q dx
0m eqn. 1), we nave = A - d ¢

dt
The value of k= 1 when @ =1, A = 1 and T =1

Now k = % . % (unit of & : W x ,‘nl“z”x“ﬁfg”a = W/mK. or W/m°C)

Thus, the thermal conductivity of a material is defined as follows :

“The amount of energy conducted through a body of unit area, and unit thickness in unit
time when the difference in temperature between the faces causing heat flow is unit temperature

difference™.



HEAT TRANSFER 781

It follows from eqn. (15.1) that materials with high thermal conductivities are good
conductors of heat, whereas materials with low thermal conductives are good thermal insulator.
Conduction of heat occurs most readily in pure metals, less so in alloys, and much less readily in
non-metals. The very low thermal conductivities of certain thermal insulators e.g., cork is due to
their porosity, the air trapped within the material acting as an insulator.

Thermal conductivity (a property of material) depends essentially upon the following factors :

(i) Material structure
(iif) Density of the material
(iv) Pressure and temperature (operating conditions)

Thermal conductivities (average values at normal pressure and temperature) of some com-
mon materials are as under :

(iz) Moisture content

Material Thermal conductivity (k) Material Thermal conductivity (k)

(W/mK) (W/mK)

1. Silver 410 8.  Asbestos sheet 0.17

2. Copper 385 9. Ash 0.12

3. Aluminum 225 10. Cork, felt 0.05-0.10

4, Cast-iron 5666 11. Sawdust 0.07

5. Steel 2045 12, Glass wool 0.03

6. Concrete 1.20 13. Water 0.55-0.7

7. Glass (window) 0.75 i4. Freon 0.0083

Following points regarding thermal conductivity—its variation for different materials and
under different conditions are worth noting :

1. Thermal conductivity of a material is due to flow of free electrons (in case of metals) and
lattice vibrational waves (in case of fluids).

2. Thermal conductivity in case of pure metals is the highest (¢ = 10 to 400 W/m°C). It
decreases with increase in impurity.
The range of k for other materials is as follows :

Alloys : = £ = 12 to 120 W/m°C
Heat insulating and building materials : £ = 0.023 to 2.9 W/m°C
Liquids : £ = 0.2 to 0.5 Wm°C
(Gases and vapours : k£ = 0.006 to 0.05 W/m°C.

3. Thermal conductivity of a metal varies considerably when it (metal) is heat treated or
mechanically processed/formed.

4. Thermal conductivity of most metals decreases with the increase in temperature (alu-
minium and urgnium being the exceptions).
— In most of liquids the value of thermal conductivity tends to decrease with tempera-
ture (water being an exception) due to decrease in density with increase in temperature.
— In case of gases the value of thermal conductivity increases with temperature. Gases
with higher molecular weights have smaller thermal conductivities than with lower
molecular weights. This is because the mean molecular path of gas molecules decreases
with increase in density and % is directly proportional to the mean free path of the
molecule.

5. The dependence of thermal conductivity (k) on temperature, for most materials is almost
linear ;

k=ky(1+ Bo) ~(15.2)
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where, &, = Thermal conductivity at 0°C, and
B = Temperature coefficient of thermal conductivity, 1/°C (It is usually positive
for non-metals and insulating materials (magnesite bricks being the
exception) and negative for metallic conductors (aluminium and certain
non-ferrous alloys are the exceptions).

6. In case of solids and liquids, thermal conductivity (%) is only very weakly dependent on
pressure ; in case of gases the value of % is independent of pressure (near standard
atmospheric).

7. In case of non-metallic solids :

— Thermal conductivity of porous materials depends upon the type of gas or liquid
present in the voids,

— Thermal conductivity of a damp material is considerably higher than that of the dry
material and water taken individually,

— Thermal conductivity increases with increase in density.

8. The Wiedemann and Franz law (based on experiment results), regarding thermal and
electrical conductivities of a material, states as follows :

“The ratio of the thermal and electrical conductivities is the same for all metals at the
same temperature ; and that the retio is directly proportional to the absolute temperature
of the metal.”

k
Mathematically, P T
k
or p il ..(15.3)

where, & = Thermal conductivity of metal at temperature T(K),
o = Electrical conductivity of metal at temperature T(K), and
C = Constant (for all metals) is referred to as Lorenz number
(= 2.45 x 108 WQ/K? ; Q stands for ochms),

This law conveys that the materials which are good conductors of electricity are also
good conductors of heat.

15.2.3. Thermal Resistance (R,,)

When two physical systems are deacribed by similar equations and have similar boundary
conditions, these are said to be analogous. The heat transfer processes may be compared by anal-
ogy with the flow of electricity in an electrical resistance. As the flow of electric current in the
electrical resistance is directly proportional to potential difference (dV) ; similarly heat flow rate,@,
is directly proportional to temperature difference (dt), the driving force for heat conduction through
a medium.

As per Ohm’s law (in electric-circuit theory), we have

Potential difference (dV)

Current (1) = Electrical resistance (R) ~(15.4)

By analogy, the heat flow equation (Fourier’s equation) may be written as

T ture diffe dt
Heat flow rate (§) = empera “Eedx ]erence( )

kA

...(15.5)
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By comparing eqns. (15.4) and (15.5), we find that I is analogus to, @, dV is analogous to dt

and R is analogous to the quantity [EZ) The quantity -gi- is called thermal conduction resist-

ance (Ry).... Le.,

B dx L Q 2
= = o AAAAA— &
th’cond. kA - dx
The reciprocal of the thermal resistance is called thermal conductance. kA

It may be noted that rules for combining electrical resistances in .
series and parallel apply equally well to thermal resistances. Fig.15.1

The concept of thermal resistance is quite helpful white making calculations for flow of
heat.

15.2.4. General Heat Conduction Equation in Cartesian Coordinates

Consider an infinitesimal rectangular parallelopiped (volume element) of sides dx, dy and
dz parallel, respectively, to the three axes (X, Y, Z) in a medium in which temperature is varying
with location and time as shown in Fig. 15.2.

Let, t = Temperature at the left face ABCD ; this temperature may be assumed

uniform over the entire surface, since the area of this face can be made
arbitrarily small.

dt
ol Temperature changes and rate of change along X-direction.
Then, [%_de = Change of temperature through distance dx, and
%

ot
t+ [—) dx = Temperature on the right face EFGH (at distance dx from the left face

ox
ABCD).
Further, let, &, ky, k, = Thermal conductivities (direction characteristics of the material)
along X, Y and Z axes.

Y
A(X,Y.2) Q*vfm >
[ ]
y D / H
o » X T
/s )
X i G
o
]
z a,—+| A, Y, 2) T3 e
» ”’,__,____-_*_*-;E
Elemental volume v L~ Fdz
{rectangular Quien g — 7y
paralislopiped) dx
Q Qg = gy dx.dy.dz

Fig. 15.2. Elemental volume for three-dimensional heat conduction analysis—Cartesian co-ordinates.
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If the directional characteristics of a material are equal/same, it is called an “Isotropic
material” and if unequal/different ‘Anisotropic material’.

g, = Heat generated per unit volume per unit time.

Inside the control volume there may be heat sources due to flow of electric current in electric
motors and generators, nuclear fission etc.

[Note. ¢ , may be funetion of position or time, or both].

p = Mass density of material.

¢ = Specific heat of the material.

Energy balance/equation for volume element ;

Net heat accumulated in the element due to conduction of heat from all the coordinate
directions considered (A) + heat generated within the element (B) = Energy stored in the element (C)

A1)
Let, @ = Rate of heat flow in a direction, and
Q' = (Q.dt) = Total heat flow (flux) in that direction (in time d71).
A. Net heat accumulated in the element due to conduction of heat from all the directions
considered : _
Quantity of heat flowing into the element from the left face ABCD during the time interval
dt in X-direction is given by :

Heat influx. @ ' =~ kx(dy.dz)%.dt ..(£)

During the same time interval dt the heat flowing out of the right face of control volume
(EFGH) will be :

Heat efflux. @', 4 4x; =@, +aix(QI')dx L)
Heat accumulation in the element due to heat flow in X-direction,
9./~ - [er . %(er) dx} [Subtracting (i) from ()]
d
=-24Q. ) dx
ox @7

d at
=- -5;[- by (dy.de) = .d‘l::ldx

af, a
= -éx—[kx ﬁx“] dx.dy.dz.d (15.6)

Similarly the heat accumulated due to heat flow by conduction along ¥ and Z directions in
time dt will be :

af, ot
dQ, = g[ky 5]dx.dy.dz.czr ~(15.7)
,_Af, &
dQ, =$[kz a}i«.dy.dz.dt ~{15.8)

Net heat accumulated in the element due to conduction of heat from all the co-ordinate
directions considered



HEAT TRANSFER 785

d ot ] ot ad ot
=-—| bk, — |dx.dy.dz. — ik, — |dx.dy.dz. —|k, — | dx.dy.dz.
ax["ax] . dr+ay[ky y} ydzdt-{-az[kzaz]dxdydzdt
d ot d ot ] ot
B. Total heat generated within the element (Qg') :
The total heat generated in the element is given by :
Q, = q,(dx.dy.dz)dt ..(15.10)

C. Energy stored in the element :

The total heat accumulated in the element due to heat flow along coordinate axes (eqn. 15.9)
and the haet generated within the element (eqn. 15.10) together serve to increase the thermal
energy of the element/lattice. This increase in thermal energy is given by :

p(dx.dy.dz)c.gz—.d*r .(15.11)

[-- Heat stored in the body = Mass of the body x specific heat of the body material
» rise in the temperature of body].

Now, substituting eqns. {15.9}, (15.10), (15.11), in the eqn. (1), we have

o )" W\ y) "o
Dividing both sides by dx.dy.dz.dt, we have

i(kﬂ.}ik_a_t.’.ik_a_t)q. =CE
ol Aol e el el Ll T B ™ ..(15.12)

or, using the vector operator V, we get

{ 0 (k at) a [ky 5’-"—] + i(kz Et‘ndx-dy-dzdf (e dy.dexiv= gz dy de)e. 5 d

V.6V + g, = o

ar
This is known as the general heat conduction equation for ‘non-homogeneous ma-
terial’, self heat generating’ and ‘unsteady three-dimensional flow’. This equation estab-
lishes in differential form the relationship between the time and space variation of temperature at
any point of solid through which heat flow by conduction takes place.

General heat conduction equation for consiant thermal conduetivity :

In case of homogeneous (in which properties eg., specific heat, density, thermal conductiv-
ity etc. are same everywhere in the material) and isotropic (in which properties are independent of
surface orientation) material, &, = ky = k, = k and diffusion equation eqn. (15.12) becomes

Pt o % 4y _pe d_1 ¥

+ + = . L
w? W R: Ok Ok a

k  Thermal conductivity
where o= — = -
p.c Thermal capacity

...{158.13)

k \
The quantity, o = ;—c* is known as thermal diffasivity.

— The larger the value of o, the faster will the heat diffuse through the material and its
temperature will change with time. This will result either due to a high value of thermal
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conductivity & or a low value of heat capacity p.c. A low value of heat capacity means
the less amount of heat entering the element would be absorbed and used to raise its
temperature and more would be available for onward transmission. Metals and gases
have relatively high value of o and their response to temperature changes is quite
rapid. The non-metailic solids and liquids respond slowly to temperature changes because
of their relatively small value of thermal diffusivity.

— Thermal diffusivity is an important characteristic quantity for unsteady conduction

situations.
Eqn. (15.13) by using Laplacian V2, may be written as :
q 1 ot
9, , J& _ 2 9
Vi + o ot ~[15.13 (a)]

Egn. (15.13), governs the temperature distribution under unsteady heat flow through a
material which is homogeneous and isotropic.

Other simplified forms of heat eonduction equation in cartesian co-ordinates :
(i) For the case when no internal source of heat generation is present. Eqn. (15.13) reduces
P A1

+ - =, =
3 5T W

(ot
[Unsteady state La # 0] heat flow with no internal heat generation|]

1 ot
or V& = P «.(Fourier's equation) ..(15.14)
(iz) Under the situations when temperature does not depend on time, the conduction then
.ot
takes place in steady state (1-9-' i 0) and the eqgn. (15.13) reduces to

+ +£=90
ox? %Rk
or V2t + qf =0 ...{Poisson’s equation) ...(15.15)

In the absence of internal heat generation, egn. (15.15) reduces to
Pt I

LA A A
x?  y? %t
or Vit =0 .(Laplace equation) ..(15.16)
{tii) Steady state and one-dimensional heat transfer
% q,
—gt===0 ..(15,
aw?  k (15.17)
{(iv) Steady state, one-dimensional, without internal heat generation
ot
— =0 ...{15.18
PW { )
(v) Steady state, two dimensional, without internal heat generation
a_2t + a_zt = 0 15 19
axz ayg ...{15.19)
(vi) Unsteady state, one dimensional, without internal heat generation
0% 1 ot

g=a-¥ ...(15.20)
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15.2.5. Heat Conduction Through Plane and Composite Walls

15.2.5.1. Heat conduction through a plane wall
Refer Fig. 15.3 (a). Consider a plane wall of homogeneous material through which heat is
flowing only in x-direction.

Let, L = Thickness of the plane wall,

A = Cross-sectional area of the wall,

% = Thermal conductivity of the wall material, and

t),t, = Temperatures maintained at the two faces 1 and 2 of the wall, respectively.

The general heat conduction equation in cartesian coordinates is given by :

P oM 9% qp 1 &
axz + -%72- + -é—z—z + 72"' = E . 5{" [Eqn 15.13]

If the heat conduction takes place under the conditions, t4

ot Pt 3%
steady state (5; = 0), one-dimensional e 0] and

N

q
with no internal heat generation (‘f = O] then the above

equation is reduced to :

P 2
2o, or Lo .(15.21)
ox? dx
By integrating the above differential twice, we have
%:Cl and t= Cyx + C, .(15.22)

where C, and C, are the arbitrary constants. The values of
these constants may be calculated from the known boundary
conditions as follows :

Atx =0 t=t,

Atx=L t=t,

Substituting the values in the egn. (15.22), we get
ty=0+Cyand t,= C.L + C,

R cane. =
()

Fig. 15.3. Heat conduction
through a plane wall.

t2 "tl

After simplification, we have, C,=t and C, = T

Thus, the eqn. (15.22) reduces to :

t _
t= [Z—Ltl]x +t, .(15.23)

The eqn. (15.23) indicates that temperature distribution across a wall is linear and is
independent of thermal conductivity. Now heat through the plane wall can be found by using
Fourier’s equation as follows :

@=—kRA % (where % = temperature gradient) ..[Egn. (1.1)]
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But, ﬂ i t2 |
dx dx
- Q= ;tl kA (ti_t?) ..(15.24)
Eqn. (15.24) can be written as :
(6 —t) _ (- 1p) (15.25)

9= WRA) T Ripeoms
where, (R,;),,.q = Thermal resistance to heat conduction. Fig. 15.3 (b) shows the equivalent
thermal circuit for heat flow through the plane wall.
Let us now find out the condition when instead of space, weight is the main criterion for
selection of the insulation of a plane wall.

Thermal resistance (conduction) of the wall, (R}, = % el
Weight of the wall, W=pAL D)
Eliminating L from (£) and (if), we get

W= pA(R,), 4 kA = (PRIAZ(R,), 4 ...(15.26)

The eqn. (15.26) stipulates the conditicn that, for a specified thermal resistance, the lightest
insulation will be one which has the smallest product of density (p) and thermal conductivity (k).

15.2.5.2. Heat conduction through a composite wall

Refer Fig. 15.4 (a). Consider the transmission of heat through a composite wall consisting of
a number of slabs,

Let L,, Ly, L, = Thicknesses of slabs A, B and C respectively (also called path lengths),
k4 kg ko = Thermal conductivities of the slabs A, B and C respectively,
t,, t,{t, > t,) = Temperatures at the wall surfaces 1 and 4 respectively, and
ty, t; = Temperatures at the interfaces 2 and 3 respectively.

* Interfaces
t "
1 \\/
1
Q 2 t3 ip
—
Temperature
profile
® © 1*
ka ke | ke
1 2 3 4
I“"LA—’I*'LE"l*—Lc—'I
(@)
o L L ty y Q
Rina Rin-a Ry c
L Lg
Hm‘AZR—Af\;’ R = oA ch-c=%
{b)

Fig. 15.4. Steady state conduction through a composite wall.
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Since the quantity of heat transmitted per unit time through each slab/layer is same, we
have

Q- ky At -ty) _kp Aty —t3) _ke Altz-t,)
Ly Ly Lg
{(Assuming that there is a perfect contact between the layers and no temperature drop occurs
across the interface between the materials).
Rearranging the above expression, we get

Q.L .

t—t,= ks _i AE)
_Q.Ly .
ty—tg = ky A (i)
t—t, = —fc'fg i)

Adding (i), (if) and (7ii), we have

Ly , Lp , L
t-t)=Q [kA.A Tka.A +kC.A]

Ay —ty)
or Q= -..(15.27)
[LA N i}
ky _ kg k¢
{t —t4) _ -ty
or Q = 3 =
Ly , Lsg | L (Ry_g + Ry p+ Ry ¢l
ko A kg A ko .A
..(15.28)
If the composite wall consists of n slabs/layers, then
t -t
Q= "1"taxrnl .(15.29)

i
£

{¢— Composite wall

©)
F@x @@

ka
Ry g Rine
....... Re o B
- ww— A i >
Rin-a A
Rinc Rin-a

Fig. 15.5. Series and parallel one-dimensional heat transfer through a composite wall and electrical analog.
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In order to solve more complex problems involving both series and parallel thermal
resistances, the electrical analogy may be used. A typical problem and its analogous electric circuit
are shown in Fig. 15.5.

A toverall

Q= IR, ...(15.30)
Thermal contact resistance. In a composite {multi-layer) wall, the calculations of heat
flow are made on the assumptions : () The contact between the adjacent layers is perfect, (i} At the
interface there is no fall of temperature, and (ifi) At the interface the temperature is continuous,
although there is discontinuity in temperature gradient. In real systems, however, due to surface
roughness and void spaces (usually filled with air) the contact surfaces touch only at discrete
locations. Thus there is not a single plane of contact, which means that the area available for the
flow of heat at the interface will be small compared to geometric face area. Due to this reduced area
and presence of air voids, a large resistance to heat flow at the interface occurs. This resistance is
known as thermal contact resistance and it causes temperature drop between two materials at

the interface as shown in Fig. 15.6.

o Nt P g s et

@ © la—— Composite wall
Y
\ ==t -—*— - Temperature drop

tk———t---1 L — — — - at the interface (A-B)
Q | \ ipf

o = = = = * Temperature drop
- -T at the interface (B—-C})

ts\——-
ts

S W S W N

Fig. 15.6. Temperature drops at the interfaces.

Refer Fig. 15.6. The contact resistances are given by

(t2 —ta) (t4 - t5)
(RthﬂAB)cond. = QjA and (Rth—BC)cont. = Q/ A

15.2.6. The Overall Heat-transfer Coefficient

While dealing with the problems of fluid to fluid heat transfer across a metal boundary, it is
usual to adopt an overall heat transfer coefficient U which gives the heat transmitted per unit area
per unit time per degree temperature difference between the bulk fluids on each side of the metal.

Refer Fig. 15.7. '

Let, L = Thickness of the metal wall,

k = Thermal conductivity of the wall material,

t, = Temperature of the surface-1,

t, = Temperature of the surface-2,

t; = Temperature of the hot fluid,

ty= Temperature of the cold fluid,
hhf = Heat transfer coefficient from hot fluid to metal surface, and
h. = Heat transfer coefficient from metal surface to cold fluid.

(The suffices Af and cf stand for hot fluid and cold fluid respectivley.)
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or

ar

1 1
b / .
: +——— Metal wall
' 1% :
1 1
1 t !
' ! ho |
: o
1
Qf—» — &
1
b Py t,
Hot fiuid film-_ | «+— Cold fiuid film
L]
\?\‘ \‘:
1 tt:f
! 1 2 !
— L—FI
i t 1, Loy
A L 1
P A KA her A

Fig. 15.7. The overall heat transfer through a plane walt.
The equations of heat flow through the fluid and the metal surface are given by

Q= hy. A(tkf— t,) D)
g-Fa “i_‘ t2) )
Q@=h,;. Alt,-tp ..{iii)
By rearranging (i), (i) and (iii), we get
Q .
b=t = h;,f-A .(iv)
QL
tl— t2= B A (U)
Q .
ty—ty= Wy A ..-(Ui)
Adding (iv), (v) and (vi), we get
; . L N 1
W lr= Q@ AR A R, A
Ay —tp)
= '_m ---(15-31)
If U is the overall coefficient of heat transfer, then
Alyr —t,)
Q=UAy-t)= 77—
hhf k hcf
1
= T——L-‘—l ..(15.32)
_— + e + [
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It may be noticed from the above equation that if the individual coefficients differ greatly in
magnitude only a change in the least will have significant effect on the rate of heat transfer.
Example 15.1. The inner surface of a plane brick wall is at 60°C and the outer surface is at
35°C. Calculate the rate of heat transfer per m? of surface area of the wall, which is 220 mm thick.
The thermal conductivity of the brick is 0.51 W/m°C.
Solution. Temperature of the inner surface of the
wall ¢, = 60°C.
Temperature of the outer surface of the wall,
t, = 35°C
The thickness of the wall, L = 220 mm = 0.22 m
Thermal conductivity of the brick,
k = 0.51 W/m°C
Rate of heat transfer per m?, q :
Rate of heat transfer per unit area,

_Q Ky -t

Brick wall
(k = 0.51 W/m°C)

! A L lL=220mm|

_ 0.51x(60-35)
- 0.22

Example 15.2. A reactor’s wall 320 mm thick, is made up of an inner layer of fire brick
th = 0.84 W/m°C) covered with a layer of insulation (k = 0.16 W/m°C). The reactor operates at a
temperature of 1325°C and the ambient temperature is 25°C.

(i) Determine the thickness of fire brick and insulation which gives minimum heat loss.

(i) Calculate the heat loss presuming that the insulating material has a maximum tem-
perature of 1200°C.

If the calculated heat loss is not acceptable, then state whether addition of another layer of
insulation would provide a satisfactory solution.

Solution. Refer Fig. 15.9. _—

——————— Fire brick

or =57.95. Wm?. (Ans.) Fig. 15.8

Given : t; = 1325°C ; t, = 1200°C, ¢; = 25°C; )
Insulation
L,+ Lgz=L =320 mm or (.32 m i
Ly, =(032-L,); (i) N
Y
ky = 0.84 Wm°C ; A7 NN
kp = 0.16 W/m°C. SN
] - . SENANRN
(l) LA' ’LB . . . t1=132500_+. 12:;50300 4—t3=25°C
The heat flux, under steady state conditions, is \\\
constant throughout the wall and is same for each .
layer. Then for unit area of wall, /
q= y) —13 _h-t _ty-ty \\
" Ly/ky +Lgtkg  Latks Lyl 1 2 3
. ATATTETE CATA BB L, —>le—Lg—>
Considering first two quantities, we have L = 320 mm—
(1325 -25) (1325 -1200)
L,/0.84 +Lpl016  L,/084 Fig 159
1300 105

o 1190L, +625(082-L,) L,
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or 1300 _ HJE
L190L, +2-625L, L,
1300 105
or v 2
2-506L, L,
or 1300L, = 105 (2 - 5.06 L)
or 1300 LA =210 - 531.3 LA
or L =*ﬂ~——=01146m0r1146mm (Ans.)
A7 (1300+53L3) ’ ’ )
Thickness of insulation Ly =320 - 114.6 = 205.4 mm. (Ans.)

(ii) Heat loss per unit area, g :
ty—t, 1325-1200
Lylky 01146 /0.84
If another layer of insulating material is added, the heat loss from the wall will reduce ;
consequently the temperature drop across the fire brick lining will drop and the interface tempera-
ture ¢, will rise. As the interface temperature is already fixed. Therefore, a satisfactory solution
will not be available by adding layer of insulation.
Example 18.3. An exterior wall of a house may be approximated by a 0.1 m layer of
common brick (k = 0.7 W/m°C) followed by a 0.04 m layer of gypsum plaster (k = 0.48 W/m°C).
What thickness of loosely packed rock wool insulation (k = 0.065 W/m°C) should be added to

Heat loss per unit area, ¢ = = 916.23 W/m?2, (Ans.)

reduce the heat loss or (gain) through the wall by 80 per cent ? (AMIE Summer, 1997)
Solution. Refer Fig. 15.10.
Thickness of common brick, L, = 0.1 m (éommon t:ric:(
Thickness of gypsum plaster,L, = 0.04 m RZE:"\T;; aser
Thickness of rock wool, Lo=x(nm)="7? / 77
Thermal conductivities : %
Common brick, k, = 0.7 Wm°C A g
Gypsum plaster, kg = 0.48 W/m°C

Rock woal, k. = 0.066 W/m°C
Case L. Rock wool insulation not used :

A (Ar) Alar)

.
B
Q
\“
™,
_ _ : \\~/
Q=TT -=01 004 -(8)
_A.+l _'+".. N
ks ky 07 048 N
Lc

Case IL Rock wool insulation used : L La |Lg
Q.- AL A(At) Gy =oim
P Ly Ly L 01 004 i =004m=x
k k 07 048 0.065

at ke Fig. 15.10

But Q,=(1-08@Q,=02Q, ..(Given)

Alat) _ A(A)
0.7 048 0065 0.7 048

ar

01 004 01 004 x
— = =02 | —t+ —— f———
0.7 048 0.7 048 0065
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or 0.1428 + 0.0833 = 0.2 [0.1428 + 0.0833 + 15.385 «xl
or 0.2261 = 0.2 (0.2261 + 15.385 x)
or x = 0.0588 m or 58.8 mm

Thus, the thickness of rock wool insulation should be 58.8 mm. (Ans.)

Example 15.4. A furnace wall consists of 200 mm layer of refractory bricks, 6 mm layer of
steel plate and a 100 mm layer of insulation bricks. The maximum temperature of the wall is
1150°C on the furnace side and the minimum temperature is 40°C on the outermost side of the
wall. An accurate energy balance over the furnace shows that the heat loss from the wall is
400 W/m2. It is known that there is a thin layer of air between the layers of refractory bricks and
steel plate. Thermal conductivities for the three layers are 1.52, 45 and 0.138 W /m°C respec-
tively. Find :

(i) To how many millimetres of insulation brick is the air layer equivalent ?

(ii) What is the temperature of the outer surface of the steel plate ?

Solution. Refer Fig. 15.11.

Thickness of refractory bricks, L,=200mm =02m
Thickness of steel plate, L, = 6 mm = 0.006 m
Thickness of insulation bricks, L,=100mm=01m

Difference of temperature between the innermost and outermost side of the wall,
A = 1150 — 40 = 1110°C

Refractory bricks
Air gap equivaient to x mm of
insulation bricks

Steel plate
Insulation bricks

‘ :
® ©| ©
1180°C \ //tso
A/4ODC
Furnace
La |leflel Lo
=200 mm =6 mm
=xmm =100 mm
Fig. 15,11

Thermal conductivities :

k, = 1.52 Wm°C ; kg = kj, = 0.138 Wim°C ; k= 45 W/m°C
Heat loss from the wall, ¢ = 400 W/m?
(i) The value of x = (L) :

S
&
. | D

We know, Q= — T
k

i
o)
f
t
e t'-" 4
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1110
or 400 =
Ly Le  Lc  Lp
ky kg ke Ry
B 1110 -
or ~ 02 (w1000) 0006 0d
152 0138 45 0138
_ 1110 _ 1110
T 01316 + 0.0072x + 0.00013 + 0.7246 0.8563 + 0.0072x
1110
0.8563 + 0.0072 x = ——— = 2.775
or + x 200
2775 - 08563
= —— = 5 . 3
or x 0.0072 266.5 mm. (Ans.)
(iz) Temperature of the outer surface of the steel plate t,:
(t., —40)
=400 = so _ ">/
7=400 = s
(2, —40)
= ¢ "7 = ]. —
or 400 (0.40138) 1.38(z,, — 40)
400
t = — = 329.8°C. N
or ©= 138 + 40 = 329.8°C. (Ans.)

Example 15.5. Find the heat flow rate
through the composite wall as shown in
Fig. 15.12. Assume one dimensional flow.

k, = 150 W/m°C,
kg = 30 W/meC,
ko= 65 W/m°C and
ky = 50 W/m°C.
(M.U. Winter, 1997)

Solution. The thermal circuit for heat
flow in the given composite system (shown in Fig. 15.12
Fig. 15.12) has been illustrated in Fig. 15.13.

Thickness :
LA=3cm=0.03m;LB=LC=8cm=0.08m;LD=5cm=O.05m

Areas :
Ay=01%01=001lm? ; Ag =0.1 x 0.03 = 0.003 m2
Ap = 0.1 x 0.07 = 0.007 m? ; Ap =01 x 0.1 = 0.01 m?
Heat flow rate, Q :
The thermal resistances are given by

L, 003
Bipa = kaAs 150001 - 002
Lg 0.08 0.89

Bous= fay " 30x0003 =
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0.08 3
R = Lo = =1 3cm
50 foA, 6w 0007 - ONTO a,] 1%
R . Lp _ 005 ., ® © © ;..
D~ p A5, 50x001 , 4
The equivalent thermal resistance for the par- 12 3 4
allel thermal resistances R, ; and R, . is given by : td—’ls > - |4—>ls -
1 1 N 1 1 N 1
(Rp)ey. Rin-p Ruc 089 0176 P
= 6.805 Q Q
———— AN — AN
1 4 Rip-a \ Rino U
(Rth)eq_ = _“6_805 = 0.147 = 400°C t2 Rm_c 3 - 60°C
Now, the total thermal resistance is given by Fig, 15.13. Thermal circuit for heat flow in the
(Ry)oar = Bopa + Byl + By p composite system.

= 0.02 + 0.147 + 0.1 = 0.267

(A peran _ (400 — 60)
(Rt~ 0267
Example 15.6. A mild steel tank of wall thickness 12 mm contains water at 95°C. The
thermal conductivity of mild steel is 50 W/m°C, and the heat transfer coefficients for the inside
and outside the tank are 2850 and 10 W/m2°C, respectively. If the atmospheric temperature is
15°C, calculate :
(i) The rate of heat loss per m? of the tank surface area ;
(ii) The temperature of the outside surface of the tank.
Solution. Refer Fig. 15.14.
Thickness of mild steel tank wall t; = 95°C 4— Tank wall
L=12mm-=0.012m —\
Temperature of water, ¢, = 95°C

Q= = 12734 W. (Ans)

ty Air

Temperature of air, L= 15°C
.. ) Water t,
Thermal conductivity of mild steel,
k = 50 W/m°C \_ b= 15
Heat transfer coefficients :
Hot fluid (water), h,, = 2850 W/m?°C L=12mm |
Cold fluid (air), A, =10 W/m?°C
(i) Rate of heat loss per m? of the tank Fig. 15.14
surface area, q :
Rate of heat loss per m? of tank surface,
q = UAlty— tp
The overall heat transfer coefficient, U7 is found from the relation ;
11 Lt 1 0012 1
U hy k hy 280 50 10
= 0,0003508 + 0.00024 + 0.1 = 0.1006




HEAT TRANSFER 797

1
Uz —— =994 Wm®C
01006 fm

g =994 x1x(95-15) = 795.2 Wim?2, (Ans.)
(ii) Temperature of the outside surface of the tank, t,:
We know that, g=h,x1x(t,- top)

or 795.2 = 10{t, — 15)
or ty= % + 15 = 94.52°C. (Ans.)

Example 15.7. The interior of a refrigerator having inside dimensions of 0.5 mx 05 m
base area and 1 m height, is to be maintained at 6°C. The walls of the refrigerator are constructed
of two mild steel sheets 3 mm thick (k = 46.5 W/m°C) with 50 mm of glass wool insulation (k =
0.046 W/m°C) between them. If the average heat transfer coefficients at the inner and outer
surfaces are 11.6 W/m2°C and 14.5 W/m2°C respectively, calculate :

(©) The rate at which heat must be removed from the interior to maintain the specified
temperature in the kitchen at 25°C, and

(ii) The temperature on the outer surface of the metal sheet.
Solution. Refer Fig. 15.15
Given : Li=L.=3mm=0003m;
Ly=50mm=005m;
ky = ko = 465 Wm°C ; kg = 0.046 W/m°C ;
hy = 11.6 Wim*C ; h, = 14.5 W/m?C ;
ty = 25°C ; t, = 6°C.
The total area through which heat is coming into the refrigerator
A=05x05x2+05x1x4=25m?

Mild steel
sheet
Glass wool
Mild steel

. 1 §heet
1 s !
Quiside surf i /‘ |

utside surface ! @ ! insi
. nside surface
of refrigerator .: é E of refrigerator
1 1
ho_""'"‘; 0,
1
1l 13
- ]
tg = 25°C} ] li=ec
! i
i 1
1 ]
t— :
1 1
12 3 4
a1l
=3mm =50 mm =3 mm

Fig. 15.15
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(i) The rate of removal of heat, Q :
Q- Algg - 1)
R NN 7N B
h, ki kg ke K
2.5(25-6)
=1 0003, 005 0003, 1 =382W. (Ans)
116 465 0046 465 145
(ii) The temperature at the outer surface of the metal sheet, t, :
Q=h, A@25 -t

or 88.2 = 116 x 2.5 (25 - tl)
or £, =25 _382 23.68°C. (Ans.)
1= 116x25 ) ’

Example 15.8. A furnace wall is made up of three layers of thicknesses 250 mm, 100 mm
and 150 mm with thermal conductivities of 1.65, k and 9.2 W/m°C respectively. The inside is
exposed to gases at 1250°C with a convection coefficient of 25 W/ m2°C and the inside surface is
at 1100°C, the outside surface is exposed air at 25°C with convection coefficient of 12 W/m?°C.
Determine :

(D) The unknown thermal conductivity % ;

(ii) The overall heat transfer coefficient ;

(i) All surface temperatures.

Solution. L, = 250 mm 0.25 m ; Ly=100mm = 0.1m;
Ly =150 mm = 0.15 m ; k, = 1.656 Wm°C ;
ke = 9.2 Wm°C ; by = 1250°C ; ¢, = 1100°C
hye = 25 Wim*C ; b, = 12 Wim*C

(i) Thermal conductivity, k (= ky) :

1 pghN 1
ty = 1250°C ¢ // E
PONJLE 1100°C NN '
: 2. |
] ' .
Gases E & / i Air
: A :
| NN :
hy,; = 25 W/ "?znc - VS
1 R H
: N 21y = 25°C
1 373 4
|‘—LA—’|4'-344—LC—'1
= 250 mm 150 mm
=100 mm
{a) Composite system.
by t tz Y ty Tt
AN AW — AW —0—— AW —O—— VW ———C
1250°C 1100°C Ry, o Ris Ripc 25°C
(Ridoarwen (Rin)com
(b) Thermal eircuit.

Fig. 15.16
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The rate of heat transfer per unit area of the furnace wall,

qg= hhf (th.f_ tl)
= 25(1250 - 1100) = 3750 W/m?

799

{A) yverall
Also, g = ~_—overall
(Rth)tutal
t -
or = (o ~2¢)
(Ry deonverg = Rip-p + Rpog + Ry o + (R Doony—cf
(1250 - 25) 1225
or 8750 = 7 LA_'_LB Lo, 1 or3780= 5 025 01_ 016 1
Bar kg ke " hy 25 166 ' ky 12
) 1225 _ 1226
004+01515+~g-—+00163+00833 02011+ 4
B B
01 01 1225
0. 289 + o = =
or 3750 ( kBJ 1225 o T e 3750 ~ 02911 = 0.0355
ky=k= —22_ . 2817 Wm*C. (Ans)
B= 0.0355 " ) )

(i) The overall transfer coefficient, U :

1
The overall heat transfer coefficient, U/ = ————
(Fyn Diotal
1 025 0.1 0.15 1

2 165 2817 9z T12

Now, Ryp)iotal =

= 0.04 + 0.1515 + 0.0355 + 0.0163 + 0.0833 = 0.3266°C m%W

o o o 20 .
Podees ~ 03266 3.08 Wm**C. (Ans.)

(i) All surface temperature ; t, t,, t,, t,
g=gy=qdp=q,
-ty (-t (ty—¢,)

or 3100 = Ty~ Lofks -~ Lojhg
(1110 -£,) 0.25 \
or 3750 = 025/165 °F t; = 1100 - 3750 x --6~g = §31.8°C
. (6318 - 1,) 01 .
Similarly, 3750 = 01/2817 O &= 531.8 - 3750 x 2817 = 398.6°C
(398.6 - t;) 05

and 3750 = or f,=398.6-3750 x o5 = 337.5°C

(337.5 - 26) _ (8375 - 25)
1/ hy 1/12

18.2.7. Heat Conduction Through Hollow and Composite Cylinders
15.2.7.1. Heat conduction through a hollow cylinder

{0.15/9.2)

[Check using outside convection, ¢ =

= 3750 W/n?}

Refer Fig. 156.17. Consider a hollow cylinder made of material having constant thermal

conductivity and insulated at both ends.
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let r,, ry = Inner and outer radii ;
t,, t, = Temperature of inner and outer surfaces, and
E = Constant thermal conductivity within the given temperature range.

Consider an element at radius 7’ and thickness ‘dr’ for a length of the hollow cylinder
through which heat is transmitted. Let d¢ be the temperature drop over the element.

Q {Heat flows
radially outwards)

Holiow cylinder Element

{Length = L}
No heat flows
in the axiat
direction

Q ty y L

1
Ry = 5kl In{r,/ry)

Fig.15.17

Area through which heat is transmitted. A = 2r r. L.
Path length = dr (over which the temperature fall is d¢)

dt dt o dr
Q=—FkA. . =—k .2 .L — per unit time or Q. — =-k.2nl.dt
r dr r

Integrating both sides, we get

& . 2
+dr =~ k2nL tzdt or Q [ln(r)f = k.2rnL [t:[

nr t
or QIn(ry/r) = k2nL{t, — t,) = k.2nL(t, — ty)
k2nL(t; —ty) (ty — 1)
= - = ...(15.
Q In (ryfy) In(ry/n) (15.33)
2nk L

15.2.7.2. Heat conduction through a composite cylinder

Consider flow of heat through a composite cylinder as shown in Fig. 15.18."
Let by = The temperature of the hot fluid flowing inside the cylinder,
t.s = The temperature of the cold fluid (atmospheric air),
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%, = Thermal conductivity of the inside layer A,

kg = Thermal conductivity of the outside layer B,

801
L = Length of the composite cylinder, and

Ly, t,, t; = Temperature at the points 1, 2 and 3 (see Fig. 15.18),
hyp b= Inside and outside heat transfer coefficients.

Cold fluid {air)

o

S

=<

The rate of heat transfer is given by,

Fig. 15.18, Cross-section of a composite eylinder.

Q= hhf - 2nry . L(thf— )=

Ry 2nLl(t) —ty)
In (ry/ry)
kp - 2nL (ty — t3)
= = . 2 . L t, — t
In (ryfry ) hey - Bmrg - Lty ~ £
Rearranging the above expression, we get
t,—L, = Q
W17 hyeny.2nl

Q
h=ty= . onl

3]
. {E)
In (ry/ry)
Q
tz - t3 = m (i)
In (ry/ry)
Q .
ty—typ= hcf Ty ol .iv)
Adding (i), (i), (i} and (iv), we have
Q 1 N 1 . 1 + 1

) ﬁ— hhf N kA kB hcf .

Intp/r) In(myin)

=ty —ty
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2rn L (thf - tcf)

Q=
1 + 1 . 1 N 1
hypr-ny ka kg . heory
In(r,/n) In{ry/ry)
] 2rL (4, -t
Q= L Uy ~tp) .(15.34)
1 +ln(1'~2/‘1'-1)+ ln(ra/r2)+ 1
_hhf n kA kB hcf /rs

If there are ‘n’ concentric cylinders, then
Q= 21‘.’L(thf _tcf)

1
hhf 51

~ 1 1
+ —Inlf,  /nl+——
Z kn v " hcf‘r(n +1}

] ...(15.35)

n=1
If inside the outside heat transfer coefficients are not considered then the above equation
can be written as

an Lt -
Q- rElh byl .(15.36)

n=n

-l /]
n=1"1

Example 15.9. A thick walled tube of stainless steel with 20 mm inner diameter and

40 mm outer diameter is covered with a 30
mm layer of asbestos insulation (k = 0.2 W/
m°C). If the inside wall temperature of the pipe
is maintained at 600°C and the outside
insulation at 1000°C, calculate the heat loss
per metre of length. (AMIE Summer, 2000)

Solution. Refer Fig. 15.19,

Asbestos

Stainless steel

20 ty= 1000°C
Given, r, = 5 = 10mm=001lm -~ Ao ey
40
Fy,= ? =20 mm = 0.02 m

20 + 30 = 50 mm = 0.05 m

s
t, = 800°C, t, = 1000°C, ky = 0.2 W/m°C

>N e
Heat transfer per metre of length, :
QL : —r,—
onL (t; - 4;) e
Q=Tn(n/n) Inly/n)
P L Fig. 15.19
A B

Since the thermal conductivity of satinless steel is not given therefore, neglecting the resist-

ance offered by stainless steel to heat transfer across the tube, we have
Q@ _ 2nlt; —t;) _ 2m(600 — 1000)

L Ini{n/r) ~ In(0.05/002)

kg 02

Negative sign indicates that the heat transfer takes place radially inward.

=~ 548.57 W/m. {(Ans.)
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Example 15.10. Hot air at a temperature of 65°C is flowing through a steel pipe of 120 mm
diameter. The pipe is covered with two layers of different insulating materials of thickness 60 mm
and 40 mm, and their corresponding thermal conductivities are 0.24 and 0.4 W/m°C. The inside
and outside heat transfer coefficients are 60 and 12 W/m°C. The atmosphere is at 20°C. Find the
rate of heat loss from 60 m length of pipe.

Solution. Refer Fig. 15.20.

Atmospheric air

Insulation layers

20
Given : r1=~1-2--=60mm=0.06m

7o =60 + 60 =120 mm = 0.12 m
ry =60+ 60 + 40 = 160 mm = 0.16 m

ky = 0.24 W/m°C ; kg = 0.4 W/m°C
hyp = 80 Wm*C ; hs = 12 W/m?C
ty = 65°C; £, = 20°C

Length of pipe, L = 60 m
Rate of heat loss, Q :
Rate of heat loss is given by

2n Lty — ¢,
Q- - T Lty — ) } [Eqn. (15.34)]

1 +1n(r2/r1)+ln(r3/r2)+ 1
_hhf 5 kA kB hcf Iy

2r x 60(65 — 20)
[ 1, In012/006) ;(016/012) 1
| 60 x 0.06 0.24 0.4 12x 0.16
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16964.6
= 0.2777 + 2.8881 + 0.7192 + 05208 = 8505 W
i.e., Rate of heat loss = 3850.5 W (Ans.)

Example 15.11. A 150 mm steam pipe has inside dimater of 120 mm and outside diam-
eter of 160 mm. It is insulated at the outside with asbestos. The steam temperature is 150°C and
the air temperature is 20°C. h (steam side) = 100 W/m2°C, h (air side) = 30 W/m2°C, k (asbestos)
= 0.8 W/m°C and k (steel) = 42 W/m°C. How thick should the asbestos be provided in order to
limit the heat losses to 2.1 kW/m? ? {N.U.)

Solution. Refer Fig. 15.21.

! Steam pipe (A)
| Insulation (B)
- {Asbestos)
1 hcf
bho b= 20°C
o
—— Tg—p/
Fig. 15.21
1
Given : ro= % = 60 mm = 0.06 m
ry= lg_o = 80 mm = 0.08 m
k, = 42 W/m°C ; kg = 0.8 Wm°C
ty = 150°C ; £ = 20°C
hyp = 100 W/m?C ; hoe = 30 Wm2°C

Heat loss = 2.1 kW/m?

Thickness of insulation (asbestos), (rg-r,):

Area for heat transfer = 2n r L (where L = length of the pipe)
Heat loss =21x2nrL kW
=21x%x2r x0.075 x L = 0,989 L kW
= 0.989 L x 10° watts

(where r, mean radius = % =75mmor 0.075m .., Given]
Heat transfer rate in such a case is given by
Q: 21I:L(thf - cf)

1 . 1}1(?‘2/112_'_ In(ry/ ) . 1
khf i kA kB hcf .73

..[Egn. (15.34)]
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2r L (150 - 20)

0989 L x 105 = -
1 In(0.08/006) In(r,/008) 1
| 100 % 0.06 42 08 30x7
816.81
0.989 x 10% = - -
0.16666 + 000685 + 2 (2/008) 1
i 0.8 307,
816.81

In(r;/0.08) 1

08 20 = 0989 x 10° — (0.16666 + 0.00685) = 0.6524
. r B x

or

- 1
1251 0.08) + —— —0.6524 = 0
or n (r,f0.08) + 307 6

3
Solving by hit and trial, we get
ry = 0.105 m or 105 mm
Thickness of insulation = r; - r, = 105 - 80 = 25 mm. (Ans.)

15.2.8. Heat Conduction Through Hollow and Composite Spheres
15.2.8.1. Heat conduction through hollow sphere

Refer Fig, 15.22. Consider a hollow
sphere made of material having constant ther-
mal conductivity. .

Let r,, r, = Inner and outer radii,

t,, t, = Temperature of inner and
outer surfaces, and
k = Constant thermal conductiv-
ity of the material with the
given temperature range.

Consider a small element of thickness

dr at any radius r.

Area through which the heat is trans-
mitted, A = 4nr?

dt
=—k . 42, =
Q T p

Q (Heat flows radially
outwards, t; > t,)

Hollow sphere

Element

r
Rearranging and integrating the above Q Y t, Q
equation, we obtain ““‘r"_“r
_fa—h
> dr = — 4nk tzdt P =ink Tif2
3
nr 1

_gv1 TR ta Fig. 15.22. Steady state conduction

or Q r =—dnk |t through a hollow sphere.
-2+1
n 2

1 1
S R\

L |
or M = 41[k (tl _ t2)

nry

Axknry(t; —ty) b~y
= = ...(15.37
or Q rE— - ( )
(drknry)
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15.2.8.2. Heat conduction through a composite sphere

Considering Fig. 15.23 as cross-section of a composite sphere, the heat flow equation can be
written as follows :

Cold fluid {air}

——

1
]
' t
EEE Y R R F ) [ PR N TUpn PR .
! i Y
\ i A
\ H /
Y T
1
. ! -
.. ~-L-
t
)
S -
.}-
el o
1
:1—"2—#
'
'4"—-—-73—5

Fig. 15.23. Steady state conduction through a composite sphere.

Q= hyy . dnr? (b, - 1) = Arkyriry(ty - tg) _ dnkpryry (¢ ~ t3)

(np-n) (ry — )
= hq, . 41t132 {t5 - tcf)
By rearranging the above equation, we have
Q .
b=ty = ——5
hf 1 hﬁf .41'!7'12 (‘)
Q (?'2 - ?'1) ..
¢t (D)
1 2 4TtkA r1r2 (u
Qny—ny)
t,— 1t L1
2 41rkB . r2r3 (u )
Q .
by—ty= hep .4m3;2 {iv}

Q 1 (r2 - rl) (r3 - r2) 1
—_ + + + =f,—t
4n h’lf . r12 kA LNy kB Ry hcf . r32 Kf o

4n(thf - tcf)

Q=
1 2+(r2—r1)+(r3~r2)+ 1 ;
hhf-"l kA.r1r2 kB.r2r3 hcf'r3

] ..{15.38)
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If there are n concentric spheres then the above equation can be written as follows :
4R(thf - ,_.f)

Q=7 = - ...{15.39)
1 X fns ) = Tn 1
+ +
[hhf.r12 2 {k,,.rn.r(“n} hcf.rz(n+1)jl

n=1
If inside and outside heat transfer coefficients are considered, then the above equation can
be written as follows :
4n(t; - bn + 1))
=5
Z Tnvyy — 1l
n=1 kn Tn N+
Example 15.12. A spherical shaped vessel of 1.4 m diameter is 90 mm thick. Find the rate

of heat leakage, if the temperature difference between the inner and outer surfaces is 220°C.
Thermal conductivity of the material of the sphere is 0.083 W/m°C.

Solution. Refer Fig. 15.24.

...{15.40)

Spherical shaped
vassel

90 mme—
Fig. 15.24
Given : r2=}-2§- =0.7m;
r,=07-~ i% =061 m,;

t, -ty = 220°C ; k = 0.083 W/m°C
The rate of heat transfer/leakage is given by
(4 - t3)
Q= LS S LA
(rp~n)
L 41*?' i)

...[Egn. (15.37)]

= = 220 ] = 1088.67 W

(0.7 - 061
| 47 x 0,083 x 0.61x 0.7

i.e., Rate of heat leakage = 1088.67 W. (Ans.)
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15.2.9, Critical Thickness of Insulation

15.2.9.1. Insulation-General aspects

Definition. A material which retards the flow of heat with reasonable effectiveness is
known as ‘Insulation’. Insulation serves the following two purposes :

(@) It prevents the heat flow from the system to the surroundings ;
(i) It prevents the heat flow from the surroundings to the system.
Applications ;

The fields of application of insulations are :

(i) Boilers and steam pipes
(it} Air-conditioning systems
(iii) Food preserving stores and refrigeratora
(iv) Insulating bricks (employed in various types of furnaces)

(v) Preservation of liquid gases etc.

Factors affecting thermal conductivity

Some of the important factors which affect thermal conductivity (k) of the insulators (the
value of & should be always low to reduce the rate of heat flow) are as follows :

1. Temperature. For most of the insulating materials, the value of % increases witk in-
crease in temperature.

2. Density. There is no mathematical relationship between & and p (density). The common
understanding that high density insulating materials will have higher values of % in not
always true.

3. Direction of heat flow. For most of the insulating materials (except few like wood) the
effect of direction of heat flow on the values of % is negligible.

4. Moisture. It is always considered necessary to prevent ingress of moisture in the insu-
lating materials during service, it is however difficult to find the effect of moisture on the
values of £ of different insulating materials,

5. Air pressure. It has been found that the value of & decreases with decrease in pressure.

6. Convection in insulators. The value of % increases due to the phenomenon of convection
in insulators.

15.2.9.2. Critical Thickness of Insulation

The addition of insulation always increases the conductive thermal resistance. But when
the total thermal resistance is made of conductive thermal resistance [(Ry,) g ] and convective
thermal resistance [(R,, ), ., ], the addition of insulation in some cases may reduce the convective
thermal resistance due to increase in surface area, as in the case of a cylinder and a sphere, and
the total thermal resistance may actually decrease resulating in increased heat flow. It may be
shown that the thermal resistance actually decreases and then increases in some cases.

“The thickness upto which heat flow increases and after which heat flow decreases is
termed as Critical thickness. In case of eylinders and spheres it is called ‘Critical radius’.

A. Critical thickness of insulation for eylinder :

Consider a solid cylinder of radius r, insulated with an insulation of thickness (ry —r) as
shown in Fig. 15.25.
Let, L = Length of the cylinder,
t, = Surface temperature of the cylinder,
t,;, = Temperature of air,
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h, = Heat transfer coefficient at the Solid——— |
outer surface of the insulation, cylinder ! Fluid film
and 1 "“*-l\

k = Thermal conductivity of Insulation
insulating material.
Then the rate of heat transfer from the
surface of the solid cylinder to the surround-
inggisgivenby = e

2rL (¢ ~ ¢
Q 1

air)
" Int/n) L1
k hy -1

..(15.41)
From eqn. (15.41) it is evident that as

In(r/n)

r, increases, the factor increases

but the factor

decreases. Thus @ be-

o - T2
comes maximum when the denominator
In (r2 /rl) + 1
k ho . ]"2
required condition is

. Fig. 15.25. Critical thickness of insulation for
:f becomes minimum. The d cylinder.

d% [ln el h,,l.rJ: 0 (r, being the only variable)
11 1 1
=t |=0
k r ho( rZZJ
1 1
or = =0 or h ro=kF
k ho.rz ¢ 2
k
or ra=r)= - .(15.42)
ko

The above relation represents the condition for minimum resistance and consequently
*maximum heat flow rate. The insulation radius at which resistance to heat flow is minimum is
called the ‘critical radius’ (r ). The critical radius r, is dependent of the thermal quantities 2 and &
and is independent of r, (i.e, cylinder radius).

*It may be noted that if the second derivative of the denominator is evaluated, it will come
out to be positive. This would verify that heat flow rate will be maximum, when r, = r,.

In eqn. (15.41) In (ry/r,)/k is the conduction (insulation) thermal resistance which increases
with increasing r, and Lk r, is convective thermal resistance which decreases with increasing r,,
At r, = r, the rate of increase of conductive resistance of insulation is equal to the rate of decrease
of convective resistance thus giving a minimum value for the sum of thermal resistances.

In the physical sense we may arrive at the following conclusions :

(i) For cylindrical bodies with r, < r, the heat transfer increases by adding insulation till r,
= r, as shown in Fig. [15.26 (a)]. If insulation thickness is further increased, the rate of heat loss
will decrease from this peak value, but until a certain amount of insulation denoted by r," at 5 is
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added, the heat loss rate is still greater for the solid cylinder. This happens when r,is small and r,
18 large, viz., the thermal conductivity of the insulation & is high (poor insulating material) and h,
is low. A practical application would be the insulation of electric cables which should be good
insulator for current but poor for heat.

(ii) For cylindrical bodies with r, > r,, the heat transfer decreases by adding insulation
[Fig. 15.26 (b)]. This happens when r| is large and r, is small, viz, a good insulating material is
used with low % and k  is high. In steam and refrigeration pipes heat insulation is the main
objective. For insulation to be properly effective in restricting heat transmission, the outer radius
must be greater than or equal to the critical radius.

QrL Q/L
A 4
a @r P ‘}/_?\
1 1 i
2R 2
2 : . 2
7 ! : Z
1
[ ] ' A
7B L g
“ ) i i /|
é‘ | | : “
1 | -
2 4 3
+ I: i > r . 1 » ¥
1 c fa o] ry
{Cylinder radius) {Cylinder radius)
k
r,src=F0 ry > =_EE>

{a) (b)
Fig. 15.26. Dependence of heat loss on insulation thickness.
B. Critical thickness of insulation for sphere :

Refer Fig. 15.27. The equation of heat flow through a sphere with insulation is given as
(tl - tair)

Q= I |, 1
dnknry | Annlh,
Adopting the same procedure as that of a cylinder, we have

d h—n 1 _
—_— + 5 =0
dry | 4nkryy  dan® . A,

_i_ i - _1_ + ,LL = 0
or dry| kry  kry r22 h,
or iz - —32"" =0
En® n'h,
or F'23 hu = 2’2]‘22
or ry(= rc) = 2—k ..(15.43)

h,

0
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Insulation

me—m =g

L3
[}

P _——————

[N [ N,

_I
\ 4
b
+

!
l

Fig. 15.27

Example 15.13. A small electric heating application Wire

uses wire of 2 mm diameter with 0.8 mm thick insulation (&

Insuiator
= 0.12 W/m°C). The heat transfer coefficient (h) on the in-
sulated surface is 35 W/m?°C. Determine the critical thick- yho
ness of insulation in this case and the percentage change in Y
the heat transfer rate if the critical thickness is used, assum- ‘.'
ing the temperature difference between the surface of the ENE Lair
wire and surrounding air remains unchanged. J
Solution. Refer Fig. 15.28,
2
Given : rn=3 =1mm = 0.001 m
ry =14 08 =18 mm=0.0018 m
k = 0.12 Wm°C, k = 35 W/m?C
Critical thickness of insulation :
The critical radius of insulation is given by
k 0.12
r, = 71:= 35 = 343 x 10° m or 3.43 mm.
Critical thickness of insulation
=r,—-r;=343 - 1= 243 mm. (Ans.)
Percentage change in heat transfer rate :
Case I: The heat flow through an insulated wire is given by
_ an (tl - ta;',-) - 21'[L (tl - tm',.) _ 2EL (t]_ - tm'r) ()
= Tnim/ny .1~ Tn(00018/000D T =" 9077 -l

+
k h,.r 0.12 35x0.0018
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Case II : The heat flow through an insulated wire when critical thickness is used is given

by
Q _ 27|:L(t1 —tai,.) _ 2“L(tl—tai,.) . 1
z2” In(r,/n) bt ~ 1n(0.00343/0.001) ~ 35x 0.00343
k h,.r, 012
_ ZEL(tl-tai,.) ..
= e = (i)
Percentage increases in heat flow by using critical thickness of insulation
1 1
= 9-22;—& x 100 = 1882077 , 100 = 11.6%. (Ans.)
1 -
20.77

15.3. HEAT TRANSFER BY CONVECTION

@ The rate equation for the convective heat transfer (regardless of particular nature)
between a surface and an adjacent fluid is prescribed by Newton’s law of cooling (Refer
Fig. 15.29)

Q= hAG, - t) (15.44)
where, & = Rate of conductive heat transfer,
A = Area exposed to heat transfer,
t, = Surface temperature,
tp = Fluid temperature, and
h = Co-efficient of conductive heat transfer.

The units of & are, h= 2 Q = ‘ZN or W/m%°C or W/mZK
(ts - tf) m“°C

The coefficient of convective heat transfer ‘4’ (also known as film heat transfer coefficient)
may be defined as “the amount of heat transmitted for a unit temperature difference between the
fluid and unit area of surface in unit time.”

The value of ‘%’ depends on the following factors :

(i) Thermodynamic and transport properties (e.g., viscosity, density, specific heat etc.) ;

(ii) Nature of fluid flow ;

(iii) Geometry of the surface ;

{(iv) Prevailing thermal conditions.

Since ‘4’ depends upon several factors, it is difficult to frame a single equation {o satisfy all
the variations, however a dimensional analysis gives an equation for the purpose which is given as

under :
hp pCD)" b b[DJC
=7t 2=
% ( . (k ] 2 ...(15.45)
DY
or Nu = Z (Rey (Pri (--L]

where, Nu = Nusselt number (hTD) s

Re = Reynoids number (E%I—)] ,
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Fluid ——» f k<t

—_—
flow \ 1 Q Surface

Pr = Prandt] number (%) .

D
7= Diameter to length ratio,
{a) Physical configuration

Z = A constant to be determined

experimentally,
per o t Q %
p = Density, o——AMWWWN——0
# = Dynamic viscosity, and ( 1 )
C = Velocity. AL
The mechanisms of convection in which (b} Equivalent circuit
phase changes are involved lead to the Fig. 15.28, Convective heat-transfer.
important fields of boiling and condensation.

1 t, -t
Refer Fig. 15.29 (b). The quantity _hX[Q= (; 7 h}{) Eqn(28.44)] is called convection thermal

resistance [(R,.), ] to heat flow.
¢ Dimensionless numbers :

Reynolds numbers, Re = %
Prandtl number, Pr= Kp _¥
E o«
Nusselt number, Nu = h_;’.
h Nu
Stanton number, St = Ve, “ R P
v
Peclet number, Pe = %— (= Re.Pr)
Graetz number, G = Pe [%)
pBgal?
Grashoff number, Gr = ——.
1

Example 15.14. A kot plate I m x 1.5 m is maintained at 300°C. Air at 25°C blows over the
plate. If the convective heat transfer coefficient is 20 W/m2°C, calculate the rate of heat transfer.

Solution. Area of the plate exposed to heat transfer, A = 1 x 1.5 = 1.5 m2

Plate surface temperature, ¢ = 300°C

Temperature of air (fluid), i = 20°C

Convective heat-transfer coeffficient, 2 = 20 W/m2°C

Rate of heat transfer, Q :

From Netwon’s law of cooling,

Q=hAlt - to)
= 20 x 1.5(300 — 20) = 8400 W or 8.4 kW. (Ans.)

Example 15.15. A wire 1.5 mm in diameter and 150 mm long is submerged in water at
atmospheric pressure. An electric current is passed through the wire and is increased until the
water boils at 100°C. Under the condition if convective heat transfer coefficient is 4500 W/m2°C
find how much electric power must be supplied to the wire to maintain the wire surface at 120°C ?
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Solution. Diameter of the wire, d = 1.5 mm = 0.0015 m
Length of the wire, { = 150 mm = 0.15 m
Surface area of the wire (exposed to heat transfer),
A=ndl=mnx0.0015 x 0.15 = 7.068 x 10* m?
Wire surface temperature, £, = 120°C
Water temperature, ¢, = 100°C
Convective heat transfer coefficient, A = 4500 W/m?°C
Electric power to be supplied :
Electric power which must be supplied = Total convection loss (@)
Q = hA(t, - tp = 4500 x 7.068 x 10~* (120 — 100) = 63.6 W. (Ans.)
Example 15.16. Water flows inside a tube 45 mm in diameter and 3.2 m long at a velocity

of 0.78 m/s. Determine the heat transfer co-efficient and the rate of heat transfer if the mean
water temperature is 50°C and the wall is isothermal at 70°C. For water at 50°C take k = 0.66 W/
mK, v = 0.478 x 10° m?/s and Prandtl number = 2.98.

Solution. Diameter of the tube, I} = 456 mm = 0.045 m

Length of the tube, 1=32m

Velocity of water, i = 0.78 m/s

For water at 60°C, k = 0.66 WmK

Kinematic viscosity, v = 0.478 x 106 m?%s
Pr =298

Reynolds number is given by
_Du _0045x078

=7 S 73431
Y 0478 x 10
From Dittus and Boelter equation, Nusselt number,
Nu = 0.023 (Re)®8 (Pr)0¢
EkQ = 0.023 (73431)°8 (2.98)°4
hx0045 _ 603 « 7810.9 x 1.547
0.66

h = 4076 Wim? K

i.e., Heat transfer co-efficient = 4076 W/m? K (Ans).

Q = hA (tw - tf)
= 4076 x nDL (70 - 50)
= 4076 x 1 % 0.045 x 3.2 x 20 = 36878 or 36.878 kW

i.e., Rate of heal transfer = 36.878 kW. (Ans).

Example 15.17. When 0.5 kg of water per minute is passed through a tube of 20 mm

diameter, it is found to be heated from 20°C to 50°C. The heating is accomplished by condensing
steam on the surface of the tube and subsequently the surface temperature of the tube is main-
tained at 85°C. Determine the length of the tube required for developed flow.

Take the thermo-physical properties of water at 60°C as :

p = 983.2 kg/m?, c,=4178 kJ/kg K, k = 0.659 W/m°C, v = 0.478 x 105 m?/s.
Solution. Given : m = 0.5 kg/min, D = 20 mm = 0.02 m, ¢, =20°C, ¢, = 50°C
Length of the tube required for fully developed flow, L :

0
The mean film temperature, ¢, = %(85 + 2 ;50) =60°C
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Let us first determine the type of the flow
m = AT = 983.2 x g x (0.02)2 x 7 = % (kg/s)

05 ><fE x —-——1— = 0.0269 m/s
60 “m~ 9832x(0.022%

D.a _002x0.0269
v 0478x10°°
Since Re < 2000, hence the flow is laminar.

With constant wall temperature having fully developed flow,

or 0=

Reynolds number, Re = =11255

hD
Ny = % 3.656
365%& 3.65x0.659
= = = 20
or h= D 0.02 120.26 W/m=C
The rate of heat transfer, Q =A A (t, -t )=m e, (t,—t)
Here, i, = 20 ; 50 =35C=1¢

(r x 0.02 x L) x 120.26 x (85 - 35) = % x (4.178 x 10°X50 — 20)

or 3778 L = 10445
1044.5

= = 2- .

or L 3778 76 m. (Ans.)

15.4. HEAT EXCHANGERS

15.4.1. Introduction

A ‘heat exchanger’ may be defined as an equipment which transfers the energy from a hot
fluid to a cold fluid, with maximum rate and minimum investment and running costs.

In heat exchangers the temperature of each fluid changes as it passes through the exchang-
ers, and hence the temperature of the dividing wall between the fluids also changes along the
length of the exchanger.

Examples of heat exchangers :

(i) Intercoolers and preheaters ; (ii) Condensers and boilers in steam plant ;
(iif) Condensers and evaporators in refrigeration units ;
(iv) Regenerators ; (v) Automobile radiators ;
(vi) Oil coolers of heat engine ; (vii) Milk chiller of a pasteurising plant ;

(viii) Several other industrial processes.

15.4.2. Types of Heat Exchangers

In order to meet the widely varying applications, several types of heat exchangers have been
developed which are classified on the basis of nature of heat exchange process, relative direction of
fluid motion, design and constructional features, and physical state of fluids.

1. Nature of heat exchange process

Heat exchangers, on the basis of nature of heat exchange process, are classified as follows :
(i} Direct contact (or open) heat exchangers.

(i} Indirect contact heat exchangers.

{a) Regenerators. {b) Recuperators.
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(i} Direct contact heat exchangers. In a direct contact or open heat exchanger the ex-
change of heat takes place by direct mixing of hot and cold fluids and transfer of heat and mass takes
place simultaneously. The use of such units is made under conditions where mixing of two fluids is
either harmless or desirable. Examples : (i) Cooling towers ; (if) Jet condensers ; (iif) Direct contact
feed heaters.

Fig. 15.30 shows a direct contact heat exchanger in which steam mixes with cold water, gives
its latent heat to water and gets condensed. Hot water and non-condensable gases leave the con-
tainer as shown in the figure.

— Non-condensable
gas

Hot water 4=

Cold water
Fig. 15.30. Direct contact or open heat exchanger.

(i) Indirect contact heat exchangers. In this type of heat exchanger, the heat transfer
between two fluids could be carried out by transmission through wall which separates the two flu-
ids. This type includes the following :

(a) Regenerators.

(5) Recuperators or surface exchangers.

{a} Regenerators : In a regenerator type of heat exchanger the hot and cold fluids pass alter-
nately through a space containing solid particles (matrix), these particles providing alternately a sink
and a source for heat flow.

Examples : (i) 1.C. engines and gas turbines ; (ii}) Open hearth and glass melting furnaces ;
(iif) Air heaters of blast furnaces.

A regenerator generally operates periodically (the solid matrix alternately stores heat ex-
tracted from the hot fluid and then delivers it to the cold fluid). However, in some regenerators the
matrix is made to rotate through the fluid passages arranged side by side which mskes the heat
exchange process continuous.

The performance of these regenerators is affected by the following parameters :

(i) Heat capacity of regenerating material,

(ii) The rate of absorption, and (iii) The release of heat.

Advantages :
1. Higher heat transfer coefficient ; 2. Less weight per kW of the plant ;
3. Minimum pressure loss ; 4. Quick response to load variation ;
5. Small bulk weight ; 6. Efficiency quite high.

Disadvantages :

1. Costlier compared to recuperative heat exchangers.
2. Leakage is the main trouble, therefore, perfect sealing is required.
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(b) Recuperators : ‘Recuperator’ is the most important type of heat exchanger in which the
flowing fluids exchanging heat are on either side of dividing wall (in the form of pipes or tubes
generally). These heat exchangers are used when two fluids cannot be allowed to mix i.e,, when the
mixing is undesirabie,

Examples : (i) Automobile radiators, (if) Oil coolers, intercoolers, air preheaters, economisers,
superheaters, condensers and surface feed heaters of a steam power plant, (iii) Milk chiller of pas-
teurising plant, (iv) Evaporator of an ice plant :

Advantages :

1. Easy construction ; 2. More economical ;

3. More surface area for heat transfer ; 4, Much suitable for stationary plants.
Disadvantages :

1. Less heat transfer coefficient ; 2. Less generating capacity ;

3. Heavy and sooting problems.

The flow through direct heat exchangers and recuperators may be treated as steady stale
while through regenerators the flow is essentially transient.

2. Relative direction of fluid motion

According to the relative directions of two fluid streams the heat exchangers are classified
into the following three categories :

(i) Parallel-flow or unidirection flow (éf) Counte-flow (iii) Cross-flow.

(i) Parallel-flow heat exchangers. In a parallel-flow exchanger, as the name suggests, the
two fluid streams (hot and cold) travel in the same direction. The two streams enter at one end and
leave at the other end. The flow arrangement and variation of temperatures of the fluid streams in
case of parallel flow heat exchangers, are shown in Fig. 15.31. I is evident from the Fig. 15.31. (b)
that the temperature difference between the hot and cold fluids goes on decreasing from inlet to
outlet. Since this type of heat exchanger needs a large area of heat transfer, therefore, it is rarely
used in practice.

t (Temp.)
4

L,
| "
— — Cod 6’0,&
0;6, i
bl == Hot = toy
\—» — Cold —» e

jl[ tc/"&m—_‘f—z

(a} ; 1 » L {Length)
2 (b)

Fig. 15.31. Parallel-flow heat exchanger.

Examples : Oil coolers, oil heaters, water heaters etc.

As the two fluids are separated by a wall, this type of heat exchanger may be called parallel-
flow recuperator or surface heat exchanger.

(it) Counter-flow heat exchangers. In a counter-flow heat exchanger, the two fluids flow in
oppostte directions. The hot and cold fluids enter at the opposite ends. The flow arrangement and
temperature distribution for such a heat exchanger are shown schematically in Fig. 15.32. The
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temperature difference between the two fluids remains more or less nearly constant. This type of
heat exchanger, due to counter flow, gives maximum rate of heat transfer for a given surface area.
Hence such heat exchangers are mosi favoured for heating and cooling of fluids,

t, 1
! %

4—Cold +— 4+—\

%o,
%1Q ={>Hot ==> e=> Qt,,z sy ""%
\_Cold «— «+— ’ o%” by
iy
l :
> L
@ “ (b)

Fig. 15.32. Counter-flow heat exchanger.

(iii) Cross-flow heat exchangers. In cross-flow heat exchangers, the two fluids (hot and
cold) cross one another in space, usually at right angles. Fig. 15.32 shows a schematic diagram of
common arrangements of cross-flow heat exchangers.

: Cold fluid (in) Cold fluic (in)
Tubes (Mixed straam) (Unmixed stream) Baffles
y
&;U b= >t >
]
Hot Hot
fid > kX ot flig > == o
{in) q j[ AV Ir Y\ V> ?UL':) {in) =>4 Pe=r> :Iumtl)
{Unmixed o {Unmixed ou
stream) =>1 A pe=> stream) =1 pe=p>
= D> = y=>
LR 2R B R Yy v v.v
Cold fluid (out) Cold fluid {out}

(a) (b)

Fig. 15.33. Cross-flow heat exchangers.

® Refer Fig. 15.33 (a) : Hot fluid flows in the separate tubes and there is no mixing of the
fluid streams. The cold fluid is perfectly mixed as it flows through the exchanger. The
temperature of this mixed fluid will be uniform across any section and will vary only in
the direction of flow.

Examples : The cooling unit of refrigeration system etc.

® Refer Fig. 15.33 (b} : In this case each of the fluids follows a prescribed path and is
unmixed as it flows through heat exchanger. Hence the temperature of the fluid leaving
the heater section is not uniform.

Examples : Automobile radiator etc.

e In yet another arrangement, both the fluids are mixed while they travel through the
exchanger ; consequently the temperature of both the fluids is uniform across the section
and varies only in the direction in which flow takes place.
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3. Design and constructional features

On the basis of design and constructional features, the heat exchangers are classified as
under :

(i) Concentric tubes. In this type, two concentric tubes are used, each carrying one of the
fluids. This direction of flow may be parallel or counter as depicted in Figs. 15.31 (a) and Fig. 15.32 (a).
The effectiveness of the heat exchanger is increased by using swirling flow.

(it) Shell and tube. In this type of heat exchanger one of the fluids flows through a bundle of
tubes enclosed by a shell. The other fluid is forced through the shell and it flows over the outside
surface of the tubes. Such an arrangement is employed where reliability and heat transfer effective-
ness are important. With the use of multiple tubes heat transfer rate is amply improved due to
increased surface area.

Hot fluid
Baffle piate {out)

Hot fluid
(i)

Cold fiuid Cold fluid
(out) (in)

{a) One-ghell pass and two-tube pass heat exchanger.

Shell fluid
< H = | = ] ]
\ 7/ \ ; A\ 5
- > ‘.— ;"7 1
i
i
4 Baffles )
1
1
. _:'-s\ ’- 1
- /A b N
. NS N A RN
Tube fluid —» R SRS B
1
v

(&) Two-shell pass and Four-tube pass
heat exchanger

Fig. 156.34, Shell and tube heat exchangers.
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(iit) Multiple shell and tube passes. Multiple shell and tube passes are used for enhancing
the overall heat transfer. Multiple shell pass is possible where the fluid flowing through the shell is
re-routed. The shell side fluid is forced to flow back and forth across the tubes by baffles. Multiple
tube pass exchangers are those which re-route the fluid through tubes in the opposite direction.

(iv) Compact heat exchangers, These are special purpose heat exchangers and have a very
large transfer surface area per unit volume of the exchanger. They are generally employed when
convective heat transfer sufficient associated with one of the fluids is much smaller than that asso-
ciated with the other fluid.

Example : Plate-fin, flattened fin tube exchangers etc.

4. Physical state of fluids

Depending upon the physical state of fluids the heat exchangers are classified as follows :
(i) Condensers (ii) Evaporators
({) Condensers. In a condenser, the condensing fluid remains at constant temperature

throughout the exchanger while the temperature of the colder fluid gradually increases from inlet to
outlet. The hot fluid loses latent part of heat which is accepted by the cold fluid (Refer Fig. 15.35).

4 = 1
\ b thh th, t 1
hy v A hy th
1,, = constant B(=t, - 1) t 1
G2
t. = constant
o=
t, Ly o l%
1 z *t 1 z

Fig. 15.35. Temperature distribution in a condenser.  Fig. 15.36. Temperature distribution in an evaporator.

(ii) Evaporators. In this case, the boiling fluid (cold fluid) remains at constant temperature
while the temperature of hot fluid gradually decreases from inlet to outlet. (Refer Fig. 15.36).
15.4.3. Heat Exchanger Analysis

For designing or predicting the performance of a heat exchanger it is necessary that the total
heat transfer may be related with its governing parameters : (i) U (overall heat transfer coefficient
due to various modes of heat transfer), (ii) A total surface area of the heat transfer, and (iii) ¢,, ¢, (the
inlet and outlet fluid temperatures). Fig. 15.37 shows the overall energy balance in a heat exchanger.

Let, m = Mass flow rate, kg/s,

¢, = Specific heat of fluid at constant pressure J/kg°C,
t = Temperature of fluid, °C, and
At = Temperature drop or rise of a fluid across the heat exchanger.

Subscripts k and ¢ refer to the kot and cold fluids respectively ; subseripts 1 and 2 correspond
to the inlet and outlet conditions respectively.

Assuming that there is no heat loss to the surroundings and potential and kinetic energy
changes are negligible, from the energy balance in a heat exchanger, we have :

Heat given up by the hot fluid, @ =m, Con (tp, —ty,) ...{15.46)
Heat picked up by the cold fluid, @ = m, Cpe (tc2 - tcl) ..{15.47)
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Total heat transfer rate in the heat exchanger, @ = UA 6, ..{15.48)

/— Heat exchanger

ln,? == Hotfud | > ——T—”>‘r-2

Q

8, \Q 2] 9
fc—L—b >  Coldfud ———» —L'tc

Heat transfer area

Fig. 16.37. Overall energy balance in a heat exchanger,

where, U = Overall heat transfer coefficient between the two fluids,
A = Effective heat transfer area, and
8., = Appropriate mean value of temperature difference or logarithmic mean temperature
difference (LMTD).
15.4.4. Logarithmic Mean Temperature Difference (LMTD)

Logarithmic mean temperature difference (LMTD) is defined as that temperature difference
which, if constant, would give the same rate of heat transfer as actually occurs under variable condi-
tons of temperature difference.

In order to derive expression for LMTD for various types of heat exchangers, the following
assumpiions are made :

1. The overall heat transfer coefficient U/ is constant.

2. The flow conditions are steady.

3. The specific heats and mass flow rates of both fluids are constant.
4.

There is no logs of heat to the surroundings, due to the heat exchanger being perfectly
insulated.

5. There is no change of phase either of the fluids during the heat transfer.
6. The changes in potential and kinetic energies are negligible.
7. Axial conduction along the tubes of the heat, exchanger is negligible.

15.4.4.1. Logarithmic Mean Temperature Difference for “Parallel-flow”
Refer Fig. 15.38, which shows the flow arrangement and distribution of temperature in a
single-pass parallel-flow heat exchanger.

Let us consider an elementary area dA of the heat exchanger. The rate of flow of heat through
this elementary area is given by

d@=UdA(t,-t)=U.dA At
As a result of heat transfer d@ through the area dA, the hot fluid is cooled by di whereas the
cold fluid is heated up by dt,. The energy balance over a differential area d4 may be written as

d@ =—my, Cpop dt, =m, “Cpe - di,=U.dA. (t,~t) ...{15.49)
(Here dt, is — ve and dt, is + ve)
or dt), =— Q@ __W

e o Cy
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d d
and dt, = 9 .4Q
mccpc Cc
where, C, = My, Con = Heat capacity or water equivalent of hot fluid, and
C,=m, Cpe = Heat capacity or water equivalent of cold fluid.
my, and r, are the mass flow rates of fluids and c,, and c,_ are the respective specific heats.
1 1
dt,—dt, =-dQ | —+
h c Q |:Ch Cc:l
1 1
dé=-d@Q | —+— ...(15.50
o[da] (15.50)
Annulus

surrounding
/ the pipe

—» —% Cod —» -—> ———Pipe

== o= Hot > =

— —» Cod —» —>

(a) Flow arrangement.

T
—_ dt,
& 4
= 3 K——
éf i t‘Z bt~
= LA |
2
E
£ 1
k,
1 Area ———» 2

(b) Temperature distribution.

Subscripta h, ¢ refer to kot and cold fluids
Subscripts 1, 2 refer to inlet and outlet conditions.
Fig. 15.38. Calculation of LMTD for a parallel-flow heat exchanger.

Substituting the value of d@Q from eqn. (15.49) the above equation becomes
1

1
da__U'tM(th_tc)[a-'-—C:}

or de=—U.dA.e[i+i]

or ©__ya[teq]
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Integrating between inlet and outlet conditions (i.e., from A = O to A = A), we get

[ [G ]l v

1 1
or In (6,/8,)=- UA [E’; + a:' ..(15.61)
Now, the total heat transfer rate between the two fluids is given by
Q=C, - 4,)=C, (&, ~t) -.{15.52)
1ty 1ty
or C, 0 ..[15.52 (a)]
1 t -t
o= ) = .[15.52 ()]
c
Substituting the values of 61-— and Ci into eqn. (15.51), we get
h °
by ~ty, b, — 1, }
In(8,/8,)=-Ua | + 4"
2/ 1 |: Q Q
UA UA
= —'Q'- [(t;I2 -1, )- (th] =, = ? (8,-0,)
Q= UA®,-96))
"~ In(8,/6)
The above equation may be written as
Q@=UA®_ -.(15.53)
8, -6 6,-8
where 9, = 21 __ 1772 ...(15.64)

T In(6,/0,) In(6,/6,)
8,, is called the logarithmic mean temperature difference (LMTD),

15.4.4.2. Logarithmic Mean Temperature Difference for “Counter-flow”

Ref Fig. 15.839, which shows the flow arrangement and temperature distribution in a single-
pass counter-flow heat exchanger.
Let us consider an elementary area dA of the heat exchanger. The rate of flow of heat through
this elementary area is given by
d@=U.dA(t,-t)=U.dA. A ...(15.55)
In this case also, due to heat transfer d@ through the area dA, the hot fluid is cooled down by
dt, whereas the cold fluid is heated by dt,. The energy balance over a differential area dA may be
written as
d@ =-my . L dt, =-m, . Cpo - G, ...(15.56)
In a counter-flow system, the temperatures of both the fluids decrease in the direction of heat
exchanger length, hence the —ve signs.

dQ dQ
dt, = — =
AT rye, Gy
d d
and dr =29 __d9
m.c,. Cc
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Annulus
surrounding
/ the pipe

“'—4‘“"-‘———Pipe
> > Hot /> >

+— +— Cod

—— +— Cod +—— +——

(a) Flow arrangement.

Areg ———»

{b) Temperature distribution.

Fig. 15.39. Calculation of LMTD for a counter-flow heat exchanger.
or

1 1
df=-d@ |— - —

¢ [Ch Cc:|
Inserting the value of d@ from eqn. (15.55), we get

d8=—UdA(t, 1) [i—i}

..(15.57)

C, C

1 1
=— UdAOl:C—h—F}
or

1 1
In(8,/6)=—-U.A {— - —:l ..(15.58)
Now, the total heat transfer rate between the two fluids is given by

8= Ch (th] _thg)=cc (t"-'z —tcl)
or

...(15.59)
I
G, Q
1
CC

...[15.80 (a)]
— t"z — tcl
or

(15,60 ()]
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1
Substituting the values of o and E’lﬂ into eqn. (15.58), we get
h (s

by <ty b, —to
1n(92/91)=—UA[‘Q 3 }

UA
Q

va

UA
=— [(t’H ""tcz)_(thj _tﬂl)] =- Q

Q
UA (8, - 9,)
or =T, /8,)
Since @=UApg_
8,8, _ 98,-8,
9,= In(65/6)  1n (8,/6,) ..(15.61(a))
A special case arises when 8, = 8, = 8in case of a counter-flow heat exchanger. In such a case,
we have

(6, -6 = (8, -8,

..(15.61)

6-6 0

%= Tne/e) " 0
This value is indeterminate. The value of 8, for such can be found by applying L’ Hospital’s

rule :
it
0, -9, X 0,
im —=—2 m — 4
82 —»0; In (02 /91) (8g/0p—1 In (02 /61)
Let (6,/8,) = R. Therefore, the above expression can be written as
m 8R-1
R->1 In(R)
Differentiating the numerator and denominator with respect to R and taking limits, we get
. o
#5 WE
Hence when 8, = 6, eqn. (15.61) becomes
@=UAa
8,, (LMTD) for a counter-flow unit is always greater than that for a parallel-flow unit ; hence
counter-flow heat exchanger can transfer more heat than parallel-flow one : in other words a
counter-flow heat exchanger needs a smaller heating surface for the same rate of heat transfer. For
this reason, the counter-flow arrangement is usually used.
When the temperature variations of the fluids are relatively small, then temperature variation
curves are approximately straight lines and adequately accurate results are obtained by taking the
arithmetic mean temperature difference (AMTD),

AMTD = 2t the U t)+ Gy —0) 610, (15.62)
2 2 2 2 e
However, practical considerations suggest that the logarithmic mean temperature difference

(6,,) should be invariably used when % > 1.7,

2
Example 15.18. The flow rates of hot and cold water streams running through a parallel-flow
heat exchanger are 0.2 kg/s and 0.5 kg /s respectively. The inlet temperatures on the hot and cold
sides are 75°C and 20°C respectively. The exit temperature of hot water is 45°C. If the individual heat
transfer coefficients on both sides are 650 W/ m?°C, calculate the area of the heat exchanger.
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Solution. Given : m, = 0.2 kgfls ; m, = 0.5 kg/s ; by, = 75°C;
th, =45°C; ¢, =20°C; h;=h, =650 W/m2°C.
The area of heat exchanger, A :
The heat exchanger is shown diagrammatically in Fig. 15.40.
The heat transfer rate, @ = m,, x ¢, X (ty, = tn,)
= 0.2 x 4.187 x (75 — 45) = 25.122 kJ/s

lC1=20"C — Cold water ———» —F 152

t, = 75°C —="> Hotwater ——=> ——=> 45°C()

tc1=20°c — Coldwater ——» —» tc2

(a} Flow arrangement.

lh1 =75°C
T Hot water
g 0, é‘ t“e = 45°C
& e
'g tcz =32°C
£ Cotd watef
&

te, = 20°C

Area / Length——»

(b) Temperature distribution.
Fig. 15.40. Parallel-flow heat exchanger.
Heat lost by hot water = Heat gained by cold water
My, X €y % (b, —ty,) = My X €y X (8, —2,)

0.2 x 4.187 x (75 — 45) = 0.5 x 4.187 x (¢, —20)

o tc2 = 3200
Logarithmic mean temperature difference (LMTD) is given by,
0,-8

8, = m ..[Eqn. (15.54)]

8 = (thl _t""l) - (thz _ t‘-‘z)
m ln[(t,ll - 1tcl)f'(t,,2 —t, bl
(75-20)-(45-32)  55-33
= In[(75 — 20)/ (45 — 32)] " In(55/13)
Overall heat transfer coefficient U7 is calculated from the relation
1 1 1 1 1 1
—_=—t —_=—t ——=—
U h h, 650 650 325
U7 = 325 Wim?°C
Also, Q=UAg

or

=28.12°C
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Q@ _ 25.122x 1000
Ue,,  325x29.12

Example 15.19. In a counter-flow double pipe heat exchanger, water is heated from 25°C to
65°C by an oil with a specific heat of 1.45 ke /kg K and mass flow rate of 0.9 kg/s. The oil is cooled
from 230°C to 160°C. If the overall heat transfer coefficient is 420 W/ m?°C, calculate the following :

{t) The rate of keat transfer,
(i) The mass flow rate of water, and
(iif) The surface area of the heat exchanger.
Solution, Given : f, =25°C; 1, =65°C, €,p =145 kfkg K ; riyy = 0.9 ks ;
ty, =230°C ; ¢, = 160°C, U = 420 W/m*°C.
(i) The rate of heat transfer, @ :
) Q= mh chhx(fhl _thg)
or @ = 0.9 x (1.45) x (230 — 160) = 91.35 kJ/s
(it} The mass flow rate of water, m, ;
Heat lost by oil (hot fluid) = Heat gained by water (cold fluid)
My X ¢y, X (g ~ ) = M x Cpe X (b, —tc,)
91.35 = . x 4,187 (65 — 25)

91.35 0.545 k
= 1187 = (6525 - 540 kefs

= 2.65 m% (Ans.)

or A=

m,

,=65C 4+—— Water 4+—— <+—— 25C(t}

t, = 230°C > 0l /> —=> 160°C (t,)

tcz = 65°C Water 25°C (tc,)

(a) Flow arrangement.

t,, =230°C
1

t,, = 65°C

lh2 =160°C

tc1 =25°C

Temp. —»

Area / Length —»

(b) Temperature distribution.
Fig. 15.41. Counter-flow heat exchanger.

(#ii) The surface area of heat exchanger, A :
Logarithmic mean temperature difference (LMTD) is given by

_ 6148y
™= In (6,/0,)
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G -ty —t) (230 - 65) - (160 - 25)
T Inlt, —t,)/ @, ~1,)] Inl(230 - 65)/(160 - 25)]
165135

or 9 = Tnl165/135) = 149-5°C

Also, @=UA®,

@  91.35x10°
Ue, 420 x 149.5

Example 15.20, Steamn enters a counter-flow heat exchanger, dry saturated at 10 bar and
leaves at 35°C. The mass flow of steam is 800 kg /min. The gas enters the heat exchanger at 650°C and
mass flow rate is 1350 kg /min. If the tubes are 30 mm diameter and 3 m long, determine the number
of tubes reguired. Neglect the resistance offered by metallic tubes. Use the following data :

For steam : t_, = 180°C (at 10 bar) ; Cpe = 2.71 kJ [Rg°C ; b = 600 W/ m2°C

or A=

= 1.45 mzo (Ans-)

For gas :c,, = 1 kJ/kg°C ; h, = 250 W/m2°C (P.U.)
. . . . B0O , . 1350
Solution. Given ; m, = m, = 50 - 13.33 kegls ; Mg =my = 60 = 22.5 kg/s ;
th, =650°C; b, (=¢,,)=180°C; ¢, =350°C ;d =30 mm = 0.03 m ; L. =3 m.
Number of tubes required, N :

Heat lost by gases = Heat gained by steam
my, X Cop X (ty, —3,) = m.x €pe X (tCZ —tcl)
22.5 x 1 x (650 — #5,) = 13.33 x 2.71 x (350 — 180}
Ip, = 377°C

t, =650°C == ==> Gas > == b, (=377C)
tc2=350°C 4 #—— glean *—— +— t,:1 {=180°C})

th, = 650°C => 0= Gas T o> t, (= 377°C)

(@) Flow arrangement.

tn, = 650°C

G iy (Qas,,
's)

t,, = 350°C
ty, (= 377°C)

4, (= 180°C)

Area ———p
(b) Temperature distribution.

Fig. 15.42. Counter-flow heat exchanger.
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Overall heat transfer coefficient is given by

1 1 d 1 1 1
—m e e = T .= i
U h dh kR asd;~d, (given)
h,xh, 950x600
or U=2—-= = 176.5 W/m2°C

By +h, 250 +600
Total heat transfer rate is given by
Q=UAs, ()
where A=Nx(ndL)=Nxnx003x3=0.2827 N m? *
Q@ =225x(1x10% x(650—-377) = 61425 x 10° W
018, Uy —te) =ty —ty)
™" I (0;/0;) Inllty -,/ (tyg —t,0)]
(650 - 350) — (377 — 180) _ 300-197 .
~ In[(650 - 300)/(377 - 180)}  1n (300/197) ~ 244-9°C
Substituting the values is eqn. (i), we get
6142.5 x 103 = 176.5 x 0.2827 N x 244.9

_ 6142.5 x 10°
"~ 176.5 % 0.2827 x 244.9

Example 15.21. A two-pass surface condenser is required to handle the exhaust from a turbine
developing 15 MW with specific steam consumption of 5 kg [ kWh. The condenser vacuum is 660 mm
of Hg when the barometer reads 760 mm of Hg. The mean velocity of water is 3 m/s, water inlet
temnperature is 24°C. The condensate is saturated water and outlet temperature of cooling water in
4°C less than the condensate temperature. The quality of exhaust steamn is 0.9 dry. The overall heat
transfer coefficient based on outer area of tubes is 4000 W/m2°C. The water tubes are 38.4 mm in
outer diameter and 29.6 mm in inner diameter. Calculate the following :

(2) Mass of cooling water circulated in kg /min,
(ii) Condenser surface area,
(iit) Number of tubes required per pass, and
(iv) Tube length. P.U.)
Solution. Given : d; = 29.6 mm = 0.0296 m ; d ,=38.4 mm = 0.0384 m ;
U=4000 Wm?C;V=8m/s; t,, = 24°C ; x (dryness fraction) = 0.9,
The pressure of the steam in the condenser,
760 — 660
Py= e
The properties of steam at P, = (1133 bar, from steam table, are :
£, =51°C; hy, = 2592 kd/kg
te =51-4=47C
The steam condensed per minute,
_ (15x1000)x 5
T 60
(¢) Mass of cooling water circulated per minute, my, (=m,) ;

or = 503 tubes. (Ans.)

x 1.0133 = 0.133 bar

i (= iy ) = 1250 kg/min

Heat lost by steam = Heat gained by water

My x (x. hy) = m, X Cop X (t;, — 1)
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1250 % (0.9 x 2592) = M, x 4,187 (47 — 24)
m, (= m,) = 30280 kg/min
Steam in (x = 0.9)

Two-pass surface
condenser

Condensate out

by, =ty = tsar = 51°C

t, = 47°C

2

t,, = 24°C

Fig. 15.43. A two-pass surface condenser.

(if) Condenser surface area, A :

_rhsx(x.hfg)_ :
Q= ——" -UA0, 46
B1 _92 - (th"l _tfl)_(th‘z “tcz)

where, 8= ine,/0,)  Inlty -6/, —t, )

(51-24)-(51-47) _ (27-4)
T In[(51-24)/(51-47)] In(27/4
Substituting the values in eqgn. (i}, we get

1250
60
or A = 1009.1 m?

{(iii) Number of tubes required per pass, N,:

mw=(§di2 xprJ xN,

30280

kil
60 4

= 12.04°C

x (0.9 x 2592 x 10°) = 4000 x A x 12.04

x (0.0298)% x 3 x 1000 x N,

30280 x 4
N = 80 % = (0.02967 x 3 x 1000
(Total number of tubes required, N = 2N‘D =2 x 245 = 490)
(iv} Tube length, L :
A=(nd L)x(2N)
1009.1 = (= x 0.0384 x L) x (2 x 245)

or = 244.46 say 245



HEAT TRANSFER 831

1009.1
L= = . . N
or nx 00384 x2x 045 \71m. (Ans)

Example 15.22. A feed water heater which supplies hot water to a boiler comprises a shell and
tube heat exchanger with one-shell pass and two-tube passes. One hundred thin-walled tubes each of
20 mm diameter and length of 2 m per pass are used. Under normal operating conditions, water
enters the tubes at 10 kg/s and 17°C and is heated by condensing saturated steam at 1 atm. on the
outer surface of the tubes. The convection coefficient of the saturated steam is 10 kW /m2°C. Determine
the water exit temperature.

Use the following properties of water :

¢, =418 kJ/kg°C ; u = 0.596 x 107 Ns/m? ; k = 0.635 W/m°C and Pr = 3.93. (MU

Solution. Given : p (number of tube passes) = 2, N (total number of tubes) = 200,

d = 20 mm = 0.02 m ; (length per pass) = 2 m, m,, =M, = 10 kg/s, te, = 17°C.

Water exit temperature, t,,

mc=§d2xprpr

[where V = velocity of water ; N p = number of tubes per pass = ¥ = 23_0 = 100]
P
or 10 = gx 0.022 x V x 1000 x 100
10x4
V= X002 % 1000 x 100 = 318 m/s
Steam in
Shell

thy =ty = teat = 100°C n
T Hot fluid (steam) 6,

9,

tc1 = 17“Cl

Fig. 15.44. One-shell pass and two-tube passes condenser.

Using non-dimensional heat transfer equation to water side, we get

Nu = _,h;_d. =0.023 (Re)O.S (Pr)yo33
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k
or hy = 5% 0.023 (Re)08 (Pry033 o)
Re pVd 1000 x0.318 x 0.02 10671
Ton 0596x1073  ©
Substituting the values in eqn. (i), we get
0.635
h, = 005 % 0.023 (1067108 (3.93)033 = 1915 W/m?°C
The overall heat transfer coefficient is given by the relation,
1 1 1
— =4
U & bk,
11 + 1 0.000622
U 1915 10x10® ~
— — 2o
U= 0000652 = 16807.7T W/m*C
Further, 0, = th, —2, = 100 — 17 = 83°C

0y=1¢, 1, =100—1,
Arithmetic mean temperature difference,
_0y+0y B83+(100-¢ )

2 2
The heat transfer rate is given by,

Q=rm € (b, —t,) = UA (AMTD) = U x (nd L x N} (AMTD)
(where A, = Burface area of all the tubes in both passes)

AMTD =91.5-051¢,

or 10 x (4.18 x 10%) (tc2 -17)=1607.7 x (n x 0.02 x 2 x 200) x (91.5 - 0.5 ¢, )
41800 (btc2 —-17)=40406 (91.5-5 tcz)
ar i, —17= 20406 (915-05¢,)=0.966(91.5-05¢, )
‘2 41800 C2 2

= 88.39 - 0.483 t,
or t. =71°C, (Ans.)

Cy

15.5. HEAT TRANSFER BY RADIATION

15.5.1. Introduction

‘Radiation’ heat transfer is defined as “the transfer of energy across a system boundary by
means of an electromagnetic mechanism which is caused solely by a temperature difference.” Whereas
the heat transfer by conduction and convection takes place only in the presence of medium, radiation
heat transfer does not require a medium. Radiation exchange, in fact, occurs most effectively in
vacuum. Further, the rate of heat transfer by conduction and convection varies as the temperature
difference to the first power, whereas the radiant heat exchange between two bodies depends on the
difference between their temperature to the Yourth power’. Both the amount of radiation and the
quality of radiation depend upon temperature. The dissipation from the filament of a vacuum tube or
the heat leakage through the evacuated walls of @ thermos flask are some familiar examples of heat
transfer by radiation.

The contribution of radiation to heat transfer is very significant at high absolute temperature
levels such as those prevailing in furnaces, combustion chambers, nuclear explosions and in space
applications. The solar energy incident upon the earth is aiso governed by the laws of radiation.
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The energy which a radiating surface releases is not confinuous but is in the form of succes-
sive and separate (discrete) packet or quanta of energy called photons. The photons are propagated
through space as rays ; the movement of swarm of photons is described as eleciromagnetic waves.
The photons travel (with speed equal to that of light) in straight paths with unchanged frequency ;
when they approach the receiving surface, there occurs reconversion of wave motion into thermal
erergy which is partly absorbed, reflected or transmitted through the receiving surface (the magni-
tude of each fraction depends, upon the nature of the surface that receives the thermal radiation).

All types of electromagnetic waves are classified in terms of wavelength and are propagated
at the speed of light (¢) i.e., 3 x 108 m/s. The electromagnetic spectrum is shown in Fig. 15.45. The
distinction between one form of radiation and another lies only in its frequency () and wavelength
(1) which are related by

e=kxf ..(15.63)

The emission of thermal radiation (range lies between wavelength of 10~ m and 10~ m)
depends upon the nature, temperature and state of the emitting surface. However, with gases the
dependence is also upon the thickness of the emitting layer and the gas pressure.

Visible

Uitraviclet

I X rays ' Infrared

Microwave
Gamma rays Jhermal radiation ——
‘-—-—-
L | | | Pf | | I J
10° 107 10° 10° 10601 10 102 10° 10°
¥R
oo

AUM—— »
Fig. 15.45. Spectrum of electromagnetic radiation.

Thermal radiations exhibit characteristics similar to those of visible light, and follow optical
laws. These can be reflected, refracted and are subject to scattering and absorption when they pass
through e media. They get polarised and weakened in strength with inverse square of radial dis-
tance from the radiating surface.

15.5.2. Surface Emission Properties

The rate of emission of radiation by a body depends upon the following factors :

(i) The temperature of the surface,

(i1) The nature of the surface, and
(tz1) The wavelength or frequency of radiation.

The parameters which deal with the surface emission properties are given below ;

(1) Total emissive power (E). The emissive power is defined as the fotal amount of radia-

tion emitted by a body per unit area and time, It is expressed in W/mZ2. The emissive power of a black
body, according to Stefan- Boltzmann, is proportional to absolute temperature to the fourth power,

E,= o T* Wim? . (15.64)
E,=cAT*W .[15.64 (@)]
where ¢ = Stefan-Boltzmann constant = 5.67 x 10~ W/m? K%.

(i) Monochromatic (spectral} emissive power (E,). It is often necessary to determine
the spectral distribution of the energy radiated by a surface. At any given temperature the amount
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of radiation emitted per unit wavelength varies at different wavelengths. For this purpose the monro-
chromatic emissive power E, of the surface is used. It is defined as the rate of energy radiated per unit
area of the surface per unit wavelength.

The total emissive power is given by

E= [ E,d\Wm? ..(15.65)
(iii) Emission from real surface-emissivity. The emissive power from a real surface is
given by
E=ztc AT*W ...(15.68)
where & = emissivity of the material.

Emissivity(e). It is defined as the ability of the surfuce of a body to radiate heat. It is also
defined as the ratio of the emissive power of any body to ithe emissive power of a black body of equal

. E , , .
temperature |l.e., e = ——J . Its values varies for different substances ranging from 0 to 1. For a black

b
body € = 1, for a white body surface € = 0 and for gray bodies it lies between 0 and 1. It may vary with
temperature or wavelength.

(iv} Intensity of radiation.

(v} Radiation density and pressure.

(vi) Radiosity (J). It refers to all of the radiant energy leaving a surface.
(vit) Interrelationship between surface emission and irradiation properties.

15.5.3. Absorptivity, Reflectivity and Transmissivity

When incident radiation also called irradiation (defined as the total incident radiation on a
surface from all directions per unit time and per unit area of surface), expressed in W/m? and denoted
by ((7) impinges on a surface, three things happens ; a part is reflected back (G,), a part is transmit-
ted through (G,), and the remainder is absorbed (G,) depending upon the characteristics of the body,
as shown in Fig. 15.46.

Incident
radiation {G) Reflected
radiation (G,)

Absorbed
g g radiation
o o (G

ey

Material
surface

™,

Transmitted
racliation (G

Fig. 15.46. Absorption, reflection and transmission of radiation.

By the conservation of energy principie,
G +G, +G,=G
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Dividing both sides by G, we get
G G G @
—L Lyt

G G G G
a+p+1=1 ...{15.67)
where, « = Absorptivity (or fraction of incident radiation absorbed),

p = Reflectivity (or fraction of incident radiation reflected), and
T = Transmittivity (or fraction of incident radiation transmitted).
When the incident radiation is absorbed, it is converted into internal energy.,
Black body. For perfectly absorbing body, « =1, p =0, © = 0. Such a body is called a ‘black
body’ (i.e., a black body is one which neither reflects nor transmits any part of the incident radiation

but absorbs all of it). In practice, a perfect black body (o = 1) does not exist. However its concept is
very important.

Opaque body. When no incident radiation is transmitted through the body, it is called an
‘opaque body’.

For the opaque body t = 0, and eqn. (15.67) reduces to

a+p=1 ..(15.68)

Solids generally do not transmit unless the material is of very thin section. Metals absorb
radiation within a fraction of a micrometre, and insulators within a fraction of millimetre. Giasses
and liquids are, therefore, generally considered as opaque.

White body. If all the incident radiation falling on the body are reflected, it is called a ‘white
body’.

For a whitebody,p=1, x=0and 1 =0.

Gases such as hydrogen, oxygen and nitrogen {(and their mixture such as air) have a
transmissivity of practically unity.

Reflections are of two types : Refer Fig. 15.47.
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Regular {specular) Diffuse reflection
reflection

Fig. 15.47. Regular and diffuse reflections.

1. Regular (specular) reflection 2. Diffuse reflection.

Regular reflection implies that angle between the reflected beam and the normal to the sur-
face equals the angle made by the incident radiation with the same normal. Reflection from highly
polished and smooth surfaces approaches specular characteristics.

In a diffused reflection, the incident beam is reflected in il directions. Most of the engineer-
ing materials have rough surfaces, and these rough surfaces give diffused reflections.



836 ENGINEERING THERMODYNAMICS

Gray body. If the radiative properties, ¢, p T of a body are assumed to be uniform over the
entire wavelength spectrum, then such a body is called gray body. A gray body is also defined as one
whose absorptivity of a surface does not vary with temperature and wavelength of the incident redia-
tion [c = (o), = constant.]

A coloured body is one whose absorptivity of a surface varies with the wavelength of radiation
[a * (a)l]'

15.5.4. Concept of a Black Body

A black body is an object that absorbs all the radiant energy reaching its surface (for a black
body o = 1, p = 0, T = 0). No actual body is perfectly black ; the concept of a black body is an idealiza-
tion with which the radiation characteristics of real bodies can be conveniently compared.

A black body has the following properties :

(i) It absorbs all the incident radiation falling on it and does not transmit or reflect regard-
less of wavelength and direction.

(ii) It emits maximum amount of thermal radiations at all wavelengths at any specified tem-

perature.
(7ii) It is a diffuse emitter (i.e., the radiation emitted by a black body is independent of direc-
tion).

Consider a hollow enclosure with a very small hole for the passage of incident radiation as
shown in Fig. 15.48. Incident radiant energy passes through the small opening ; some of this energy
is absorbed by the inside surface and some is reflacted. However, most of this energy is absorbed on
a second incidence. Again, a small fraction is reflected. After a number of such reflections the amount
unabsorbed is exceedingly small and very little of the original incident energy is reflected back out of
the opening. A small hole leading into a cavity (Hohlraum) thus acts very nearly as a black body
because all the radiant energy entering through it gets absorbed.

The Hohlraum is
usually kept at
a constant temperature, T

Fig. 15.48. Concept of a black body.

Isothermal furnaces, with small apertures, approximate a black body and are frequently
used to calibrate heat flux gauges, thermometers and other radiometric devices,
15.5.5. The Stefan-Boltzmann Law

The law states that the emissive power of a black body is directly proportional to the fourth
potver of its absolute temperature.
ie., E =cT!



HEAT TRANSFER 837

where, E, = Emissive power of a black body, and ...{15.69)
¢ = Stefan-Boltzmann constant
= 5.67 x 108 W/m? K4
Equation (15.69) can be rewritten as :

7 3
E, =567 [m) -(15.70)
15.5.6. Kirchhoff's Law _
The law states that at any temperature the ratio of total Walls having
emissive power E to the total absorptivity o is a constant for all uniform temperature

substances which are in thermal equilibrium with their envi-

ronmendt. Large

Let us consider a large radiating body of surface area A body
which encloses a small body (1) of surface area A, {as shown
in Fig. 15.49). Let the energy fall on the unit surface of the Hollow
body at the rate E,. Of this energy, generally, a fraction o, will space
be absorbed by the small body. Thus this energy absorbed by
the small body (1) is o, 4, E,, in which 0, is the absorptivity of
the body. When thermal equilibrium is attained, the energy Fig. 15.49. Derivation of
absorbed by the body (1) must be equal to the energy emitted, Kirchhoffs law.
say, £, per unit surface. Thus, at equilibrium, we may write

AR =0y A E, ..(15.71)

Now we remove body (1) and replace it by body (2) having absorptivity o,. The radiative
energy impinging on the surface of this body is again E,. In this case, we may write

Ay = ALK, ..(15.72)
By considering generality of bodies, we obtain
E, = E_EB_E ..(15.73)
oy Qg o
Also, as per definition of emissivity £, we have
2
€= E,
or E, = -‘§~ ..(15.74})
By comparing eqns. (15.73) and (15.74), we obtain
£=o .-(15.75)

(o is always smaller than 1. Therefore, the emissive power E is always smaller than the
emissive power of a black body at equal temperature).

Thus, kirchhoff's law also states that the emissivity of a body is equal to its absorptivity when
the body remains in thermal equilibrium with its surroundings.

15.5.7. Planck’s Law

In 1900 Max Planck showed by quantum arguments that the spectral distribution of the
radiation intensity of a black body is given by

2ne?hi 8

(By)p = ——
e ( _ch_ )_ . .(Planck’s law) .(15.76)
AT
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where, (E, ), = Monochromatic (single wavelength) emissive power of a black body,
¢ = Velocity of light in vacuum, 2.998 x 10% ~ 3 x 108 m/s,
h = Planck’s constant = 6.625 x 103 jg,
A = Wavelength, pm,
k = Boltzmann constant = 1.3805 x 1023 J/K, and
T = Absolute temperature, K.
Hence the unit of (E, ), is W/m? pym

Quite often the Planck’s law is written as

-5
- S
20
exp [KT} 1 .(15.77)
where, C, = 2rc®h = 3.742 x 108 W.um¥m? ;
C, = % = 1.4388 x 10* umK

Equation (15.76) is of great importance as it provides quantitative results for the radiation
from a black body.

The quantity (E,),, monochromatic emissive power, is defined as the energy emitted by the
black surface in all directions at a given wavelength A per unit wavelength interval around ) ; that is,
the rate of energy emission in the interval dX is equal to (K, ), dA. The total emissive power and
menochromatic emissive power are related by the equation

E,= | By .{15.78)
A plot of (E,), as a function of temperature and wavelength is given in Fig. 15.50.
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Fig. 15.50. Variation of emissive power with wavelength.
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The plot shows that the following distinct characteristics of black body radiations :

1. The energy emitted at ail wavelengths increases with rise in temperature.

2. The peak spectral emissive power shifts towards a smaller wavelength at higher tempera-
tures. This shift signifies that at elevated temperature, much of the energy is emitted in a
narrow band ranging on both sides of wavelength at which the monochromatic power is
maximum.

3. The area under the monochromatic emissive power versus wavelength, at any tempera-
ture, gives the rate of radiant energy emitted within the wavelength interval dA. Thus,

dE, = (E;), dA
A =
or E = -0 () d ... over the entire range of length.

The integral represents the total emissive power per unit area radiated from a black body.

15.5.8. Wien’s Displacement Law

In 1893 Wien established a relationship between the temperature of a black body and the
wavelength at which the maximum value of monochromatic emissive power occurs. A peak mono-
chromatic emissive power occurs at a particular wavelength. Wien’s displacement law states that
the product of A,,__ and T is constant, ie.,

AL . T = constant ..(15.79)
-5
(Ey )y = CA
2
=2 |1
exp ( JLTJ
(Ey)p becomes maximum (if 7' remains constant) when
dE)y, _ 0
dA
-5

ie., Ay _d 28 10

dv |y (ﬁj -1

S q|ese it -c i Ezj&(_ij
[exp(m,] 1:|( 5CA-C X {GXP(AT T 32
or : o) =0
C
[exp ( ——EJ - 1}
AT
C. : i C
- 6 at'3 ] -5 =2 | _

or 5C X exp(lTJ+5Cll +C,C X 27 exp(M,J_O

Dividing both side by 5C; 15, we get
— exp (&)+1+1 C iexp [&)=O

AT 5 2AT AT
Solving this equation by trial and error method, we get

C__ G

AT Ao T~ 4.965

C 1.439 x 10*
T= 2 - K = 2898 pmK (=~ 2900 ymK
Mmax T'= s = 4065~ "™ pmkK ( uK)

ie., Amax T = 2898 pmK ..(15.80)
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This law holds true for more real substances ; there is however some deviation in the case of
a metallic conductor where the product (Ay,, .T) is found to vary with absolute temperature. It is
used in predicting a very high temperature through measurement of wavelength.

A combination of Planck’s law and Wien’s displacement law yields the condition. for the maxi-
mum monochromatic emissive power for a black body.

_3 -b
15 2.898 x 10

0.374 x 107
(Eppdmax = G O = .
exp[———cz—]—l exp|:1.4388x10"2}_1
Aax T 2.898 x 107°
or (Eypmax = 1.285 x 107% 7 W/m? per metre wavelength .(15.81)

15.5.9. Intensity of Radiation and Lambert’s Consine Law
15.5.9.1. Intensity of Radiation

When a surface element emits radiation, all of it will be intercepted by a hemispherical sur-
face placed over the element. The intensity of radiation (I} is defined as the rate of energy leaving
@ surface in a given direction per unit solid angle per unit area of the emitting surface normal to the
mean direction in space. A solid angle is defined as a portion of the space inside a sphere enclosed by
a conical surface with the vertex of the cone at the centre of the sphere. It is measured by the ratio of
the spherical surface enclosed by the cone to the square of the radius of the sphere ; it unit is

2
steradian (sr). The solid angle subtended by the complete hemisphere is given by : 2:: = 21,

Fig. 15.51 {a) shows a small black surface of area dA {(emitter) emitting radiation in different
directions. A black body radiation collector through which the radiation pass is located at an angu-
lar position characterised by zenith angle 8 towards the surface normal and angle ¢ of a spherical
coordinate system. Further the collector subtends a solid angle do when viewed from a point on the
emitter.

Let us now consider radiation from the elementary area dA, at the centre of a sphere as
shown in Fig. 15.51. Suppose this radiation is absorbed by a second elemental area dA,, a portion of
the hemispherical surface.

The projected area of dA, on a plane perpendicular to the line joining dA, and dA, = dA, cos 6.

Normal Emitted radiation
Radiation
4 coliactor iy

b—o/ /A

i fg =1,c080
ra T
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Black surface 7 e !
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A ]
1
i
1
1
1
1
1

(a) Special distribution of radiations emitted from a surface.
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dA,=r sin6dode

rsingdo

(b} Mlustration for evaluating area dA,
Fig. 15.51. Radiation from an elementary surface.

dA.
The solid angle subtended by dA, = —2
r

d@; o

..(15.82)
dA; cos 0 x ?2;2

The intensity of radiation, J=

where d@, , is the rate of radiation heat transfer from dA, to dA,.

It is evident from Fig. 15.51 () that,

dA, = r dB (r sin 8 d)

or dA, = 2 sin 0.46.d6 ..(15.83)

From eqns. (15.82) and (15.83), we obtain

d@Q) ,=IdA; .sin0®.cos6.d0.dp
The total radiation through the hemisphere is given by

e=§ o=2n
QzIdAl-l-e:o J;=0 sin 0 cos 0 d0 do

-1

=2rnldA, sin © cos 6 d6

2
9=0

.4
=nldA; [? 2sin0cos0de
0=0

.7
=nIdA, [* sin20de
8=0

or Q=nldA, ..{15.84)
Also Q=EdA,
EdA =nldA,

or E=n]

i.e, The total emissive power of a diffuse surface is equal to © times its intensity of radiation.
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15.5.9.2. Lambert’s Cosine Law

The law states that the total emissive power E, from a radiating plane surface in any direction
is directly proportional to the cosine of the angle of emission. The angle of emission 0 is the angle
subtended by the normal to the radiating surface and the direction vector of emission of the receiv-
ing surface. If E_ be the total emissive power of the radiating surface in the direction of its normal,
then

E9 = En cos O ...{15.85}

The above equation is true only for diffuse radiation surface. The radiation emanating from a
point on a surface is termed diffused if the intensity, I is constant. This law is also known as Lambert’s
law of diffuse radiation.

Example 15.23. The effective temperature of a body having an area of 0.12 m? is 527°C.
Calculate the following :

(i) The total rate of energy emission.
(ii) The intensity of normal radiation, and
(iii) The wavelength of maximum monochromatic emissive power.
Solution. Given : A =0.12m?;T=527+ 273 =800 K
(i) The total rate of energy emission, E, :
E, = 6 AT* W (watts) ..|Egn. 15.64 (a)]

4
800
= 5.67 x 10 x 0.12 x (800)* = 5.67 x 0.12 x (100) = 27869 W. (Ans.)

(ii) The intensity of normal radiation, I, :

I, = —%, where E, is in W/m? K*

800

oT* 567 (100)
- = - = 7392.5 W/m2.sr. (Ans.)

T
(iif) The wavelength of maximum monochromatic emissive power, A . :

From Wien’s displacement law,
Ao T = 2898 um K ..[Eqn. 15.80]

2898 2898
Amax = 7 = R0 = 3.622 um. (Ans.)

Example 15.24. Assuming the sun to be a black body emitting radiation with maximum
intensity at A = 0.49 um, caleulate the following -
(i) The surface temperature of the sun, and
(it) The heat flux at surface of the sun.
Solution. Given : A = 0.49 um
(i) The surface temperature of the sun, T :
According to Wien's displacement law,
Ay - T = 2898 umK
2898 2898

or

hmu 048 = = 5914 K. (Ans.)

(i) The heat flux at the surface of the sun, (E)_, :
4

T
g
(B). = ocT*=567x10 1‘4-567(10())
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4
= 7 2
100 J = 6.936 x 10° Wm

Example 15.25. Calculate the following for an industrial furnance in the form of a black body
and emitting radiation of 2500°C :
(i) Monochromatic emissive power at 1.2 um length,
(i) Wavelength at which the emission is maximum,
(i) Maximum emissive power,
(iv) Total emissive power, and
(v) Total emissive power of the furnance if it is assumed as a real surface with emissivity equal

5914
=567 x [

to 0.9,
Solution. Given : T=2500+ 273 =277T3 K ;A =12 yum, £ =09
(i) Monochromatic emissive power at 1.2 pm length, (E,), :

C 8
2
2 |-1
exp [ T J
where, C, = 3.742 x 108 W, pm*/m? = 0.3742 x 10-** W.m*m? and
C, = 1.4388 x 102 mK
Substituting the values, we get
E )__03742x10”5x(L2x10‘%“5_‘L5x10“
M ( 1.4388 x 10~ J_ . 74.48

According to Planck’s law, (Ey), = [Egn. (15.77)]

1.2x 1079 x 2773

= 2.014 x 1012 W/m2, (Ans.)
(if) Wavelength at which the emission is maximum, A ___ :
According to Wien’s displacement law,

_ 2898 2898

—=—— = 1.045 Ans.
Rmax T 5773 tm. (Ans.)

({ii) Maximum emissive power, (E))max ¢
(B3 )max = 1.285 x 10-5 T5 W/m? per metre length ..[Eqn. (15.81}]
=1.285 x 1075 x (2773)° = 2.1 x 1012 W/m? per meire length. (Ans.)
[Note. At high temperature the difference between (E, )y and {(Ejp )y, is very small].
(iv) Total emissive power, E, :
2773\ 6w 2
Eb = GT4 = H.67 x 10_8 (2273)4 = 5.67 W = 8.352 x 10% W/m
(v) Total emissive power, E with emisivity (¢) = 0.9
2773Y*
E=¢0T*=09x567 Yoo, = 3.017 x 10° W/m2. (Ans.)
15.5.10. Radiation Exchange Beiween Black Bodies Separated by a Non-absorbing
Medium
Refer Fig. 15.52. Let us consider heat exchange between elementary areas dA, and dA,, of two
black radiating bodies, separated by a non-absorbing medium, and having areas A, and A, and

temperatures T, and T, respectively. The elemenary areas are at a distance r apart and the normals
to these areas make angles 8, and 6, with the line joining them. Each elemental area subtends a
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solid angle at the centre of the other. Let dw, be subtended at

dA, by dA, and da, subtended at dA;;y dA,. Then A T2

do,= 22958 g de, = B0 154

r r

The energy leaving dA, in the direction given by the 62 Normai to dA,
angle per unit solid angle = I, dA, cos 8,. r
where, I, = Black body intensity, and 8, N 1o dA

dA, cos 8, = Projection of dA, on the line between the orma !
centres.

The rate of radiant energy leaving dA,and striking on
dA, is given by %4, ATy

d@y o= Ib1 dA, cos 6,. doy, Fig. 16.52. Radiation heat exchange
I, cos 6, cos®, dA between two black surfaces.
e Rl s Aenie ik .(15.87)

-
This energy is absorbed by the elementary area dA,, since both the surfaces are black. The
quantity of energy radiated by dA, and absorbed by dA, is given by
I, cos8;cos @ dA.
4@y, = 02O 05t dhy Iy .(15.88)

r
The net rate of transfer of energy between dA, and dA, is

d@, =dQ, ,—dQ,,

dAy dAg cos 81 cos B,
= 2 (I, - L)
But Ib; = _-1'[_1 and Ibz = ——n— ...[Eqn. (15.88)]
dA 6 6
dQ,, = 241 dA, :;sz 1089 E, -E,) ..{15.89)
odA ] ]
or dQyy = T4 dA”;’: 198" (12 - 1) .(15.90)
The rate of total net heat transfer for the total areas A, and A, is given by
] 6, dA
Q, = j d@Qy =0 (T2 - T j jc"s 1 °°Br22 144, .(15.91)
A A,

The rate of radiant energy emitted by A, that falls on A,, from eqn. (15.87), is given by
cos B cos B, dA.
Quo=1,, ‘”' 1 ,-22 1 dAy
A4

_ i cos 8 cos 8, dA; dA,
@y =0T J 2 {(15.92)
Ad,
The rate of total energy radiated by A, is given by,
Q=40 T3
Hence the fraction of the rate of energy leaving area A; and impinging on area A, is given by
Qe 1 J‘ cos 0, cos B, dA; dA,
T A 2 -{15.93
QI AI A4, o ( )

or Qg _ Fi o ..[15.93 (a)]
&
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F,_, is known as ‘configuration factor’ or ‘surface factor’ or ‘view factor’ between the
two radiating surfaces and is a function of geometry only.

Thus, the shape factor may be defined as “The fraction of radiative energy that is diffused
from one surface element and strikes the other surface directly with no intervening reflections.”

Further, Q ,=F A cT? ..(15.94)
Similarly, the rate of radiant energy by A, that falls on A,, from eqn. (15.88), is given by
Q. =0T J"‘coselcosﬂg dA, dA,
w
AAy
The rate of total energy radiated by A, is given by
Q=40 T
Hence the fraction of the rate of energy leaving area A, and impinging on area A, is given by
@ 1 J‘ J'coselcosez dA, dA,
Ay nr?

= ..(15.96)
% A, 4, "
&)
or —=2=F_
@ >t
F, , is the shape factor of A, with respect to A,
&1=F_ A cT! ...(15.96)
From eqns. (15.93) and (15.95), we get
AF ,=AF,, ...(15.97)

The above result is known as reciprocity theorem. It indicates that the net radiant inter-
change may be evaluated by computing one way configuration factor from either surface to the
other. Thus the net rate of heat transfer between two surfaces A, and A, is given by

Qu=AF 0@ -1,
= A2 F2_1 s) (T14 — 1'24) (1598)

It may be noted that eqn. (15.98) is applicable to black surfaces only and must not be used for

surfaces having emissivities very different from unity.

Example 15.26. A body ot 1000°C in black surroundings at 500°C has an emissivity of 0.42 at
1000°C and an emissivity of 0.72 at 500°C. Calculate the rate of heat loss by radiation per m2,

(i) When the body is assumed to be grey with e = 0.42.
(if) When the body is not grey.
Assume that the absorptivity is independent of the surface temperature.
Solution. () When the body is grey with ¢ = 0,42 ;
T, =1000+ 273 = 1273 K
T,=500+273=773 K
g at 1000°C = 0.42
£ at 500°C = 0.72
6=567x 108
Heat loss per m? by radiation,
g=¢e0 (T - T4
= 0.42 x 5.67 x 1078 [(1273) — 773)*] = 54893 W
i.e, Heat loss per m? by radiation = 54.893 kW. (Ans.)
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(i) When the body is not grey :
Absorptivity when source is at 500°C = Emissivity when body is at 500°C
i.e., absorptivity, o = 0.72

Then, energy emitted = &6 T\* = 0.42 x 5.67 x 10~ x (1273)*

and, Energy absorbed = 001"24 =0.72 x 5.67 x 1078 x (773)*

ie., g = Energy emitted - Energy absorbed
=042 x 5.67 x 1078 x (1238) — 0.72 x 5.67 x 1073 x (773*
= 62538 — 14576 = 47962 W

i.e., Heat loss per m? by radiation = 47.962 kW. (Ans.)

Example 15.27. A long steel rod, 22 mm in diameter, is to be heated from 420°C to 540°C. It is
placed concentrically in a long cylindrical furnace which has an inside diameter of 180 mm. The
inner surface of the furnace is at a temperature of 1100°C, and has an emissivity of 0.82. If the surface
of the rod has an emissivity of 0.62, find the time required for the heating operation.

Take for steel : ¢ = 0.67 kJ (kg K, p= 7845 kg /m5.

Solution. Refer Fig. 15.53.

Diameter of the steel rod i As
=22 mm = 0022 m T Ay ——
‘1 ¢ ‘ ‘ ‘ ; }/ Steel rod

Inside diameter of the furnace
=180 mm = 0.18 m

!
Emissivity g, = 0.62 .y ¥ ¥ +#

Emissivity €y = 0.82
Specific heat of steel, ¢ = 0.67 kJ/kg K Fig. 15.53
Density of steel, p = 7845 kg/m3
T =420+ 273=693 K ..... 1st case
and =540+ 273=813K ..... 2nd case

Ty=1100 + 273 = 1373 K
The surface area of the rod, A, =71 x0.022 x [ m?
The surface area of the furnace, A, = n x 0.18 x [ m?
Time required for the heating operation, t, :
Initial rate of heat absorption by radiation, when the rod is at 420°C or 693 K

Q- A(Ty - TpY)

© i + fq_'l (1 _ 1]
g Az g

1% 0.022x 1x 567 x 107% (693 — 1373*)

1 N 7 x 0.022 x | [ 1 _1]
0.62 nx018x1 j| 082
= 2025 - 79405 Wim [+ I=1m...assumed]
Rate of heat absorption at the end of the heating process, when the rod is at 540°C or 813 K
Aol -1y

i+ﬁ[1_1]
€1 Ayl

Q=
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7 x 0.022 x 1x 5.67 x 1078 (813* — 1373%)
1 L Bx0022xI[ 1 _1]
062 =®x018x! | 082

—12214.3
= “‘-"T64— = - 7447.7T W/m
Average rate of heat absorption during the heating process

Q, = 105+ THTT oo

Time required for heating, ¢, is obtained from the equation

me, AT = Qav’ x b,
_ [n/4 % (0.022)° x 1x 7845] x 0.67 x (540 — 420) x 1000
- 7694.1

th
=3L16 5. (Ans.)

Example 15.28. Calculate the heat transfer rate per m? area by radiation between the surfaces
of two long cylinders having radii 100 mm and 50 mm respectively. The smaller cylinder being in the
larger cylinder. The axes of the cylinders are parallel to each other and separated by a distance of
20 mm. The surfaces of inner and outer cylinders are maintained at 127°C and 27°C respectively. The
emissivity of both the surfaces is 0.5,

Assume the medium between the two cylinders is non-absorbing. P.U.)

Solution. Given : ry=50mm=005m;r,=100 mm=0.1m, T, =127 + 273 =400 K,

T,=27+273=300K,¢e,=¢,=05
The heat transfer between two concentric or eccentric cylinders is given by

Aol -1%
1-¢, 1 (1—82}A1
—————— +__.._‘;+ —_—= 2
£y J A, g2 4,
A 2l _n

Here F1_2=landz; 2nr2L_r2

(Q12)net = [

Substituting the values, we have

4 4
1x567 (@EJ _[@9]
100 100 992 95

(Q12)net = 2
(1_0'5)+1(1_0'5}x9;0£ 2.5
0.5 0.5 0.1

Example 15.29. Three thin walled infinitely long hollow cylinders of radii 5 ¢m, 10 cm and

15 cm are arranged concentrically as shown in Fig. 15.54, T,=1000Kand T, = 300 K.
Assuming €, = &, = £, = 0.05 and vacuum in the spaces between the evlinders, calculate the
steady state temperature of cylinder surface 2 and heat flow per m? area of cylinder 1. P.u.)

Solution. Given : ry=5cm;r,=10cm; rg=15em; 7T, = 1000K; T, =300 K

g, =€, =£, =005

= 396.9 W/m2. (Ans.)

For steady state heat flow,
Qo= @y
Aol - T*) - 4 o (T - TF)
(1-.51J+ 1 +[1—e2}§l [_1—52]+ 1 +[1—e3Jﬁ
€ Fi_g gz J Ap & L €5 ) Ag

or
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4 4
1000} (T 7
2en Li| == ~| =&
e [( 100 ) (100} ] N
[1— 0.05] P14 (1— 0.05) < 05
0.05 005

w5 (53

[1— 0.05)_'_ 1+[1—— 0.05))( 0.67
0.0 0.05

Fig. 15.564

0.05(10000 — x*) - 0.1(x* -81)

or

29.4 32.73

(1000 — 8 = —00 X0 -y 81y 1806 - 81
or —%% = 3573 %005 & ~81)=18("-81)
or 2,824 = 10000 — 145.8 = 9854.2

~ (9854.2)”4 _on
or X = 2_8 =i.
T

or 100 =T77or T2 =770 K

Heat flow per m? area of cylinder 1,
A o(T - TY)

-
3 g5 ) Ag

4 4
1x5.67|( 1000} [ﬂ)
100 100
T 71-005 1-0.05
[ 0.05 )* 1+( 0.0 }X%
_ 5.67 x (10;)3(;— 3515.3) = 12464 W. (Ans.)
Example 15.30. Two concentric spheres 210 mm and 300 mm diameters with the space befween
them evacuated are to be used to store liquid air (- 153°C) in a room at 27°C. The surfaces of the

spheres are flushed with aluminium (= 0.03) and latent heat of vaporization of liguid air is
209.35 kJ [kg. Calculate the rate of evaporation of liguid air. (M.U))

210 00
Solution. Given : r, = o = 106 mm =0.106m;ry = —32— =150 mm=0.15m;

T)=-153+273=120K; 7, =27 + 273 = 300 K ; €, = &, = 0.03, h, = 209.35 kd/kg.
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Rate of evaporation of liguid air ;
The heat flow from the inner sphere surface to outer sphere
surface is given by,
AIG(T14 d 2.‘24) TE

Qe =
[1-—51]+ 1 +[1—~32Ji&
Fi s €2 J A

dnrlo(Ty! - T
= _ - 2
€ €9 n

4 4 Fig. 15.55
47 % (0.105)% x 5,67 (59) _ (332) g
100 100

= 2
(1-— 0.03} 14 ( 1- 0.03] x (0.105)
0.03 0.03 0.15
_ 0.7855(2.07-81) -61.99

T 3233+1+15.84 4917

— ve sign indicates that heat is gained by the surface 1, means, heat is flowing from outside
surface to inside surface.

=-126 W

Th ¢ . 1.26 x 3600
e rate of evaporation = 509.35 % 1000 = 0.0217 kg/h. (Ans,)

Example 15.31. Liquid oxygen (boiling temperature = — 182°C) is to be stored in spherical
container of 30 cm diameter. The system is insulated by an evacuated space between inner sphere and
surrounding 45 cm inner diameter concentric sphere. For both spheres € = 0.03 and temperature of the
outer sphere is 30°C. Estimate the rate of heat flow by radiation to the oxygen in the container.

Solution. Given : T,=-182+273=91K, T, = 30 + 273 = 303 K & =¢=003
d;=30em=03m, d,=45cm = 045 m.
Rate of heat flow, Q,, :

The heat flow between the two concentric
C e Evacuated
spheres by radiation is given by space

Q,, = AIG(TI4"T24)
12—1-—81+ 1 [l—azjﬁ

£=0.03

& F o\ &g A

For concentric spheres

F_s=1
2 2
A (d [0.3)
D8 o[22 204444
(2] -0

0.3}
A =4n p? =4n x (—2—) = 0.283 m?
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Now substituting the values in the above equation, we get
4 4
91 303
0283567 || — | - | —
) {[100} [100] ]

127 _ _
(=00 (00 e

0.03
0.283 x 5.67(0.686 - 84.289)
- 32.33 + 1+ 14.37
— ve sign shows heat flows from outside to inside. (Ans.)
Example 15.32 (Radiation shield). The large parallel planes with emissivities 0.3 and 0.8

exchange heat. Find the percentage reduction when a polished aluminium shield of emissivity 0.04 is
placed between them. Use the method of electrical analogy.

Solution. Giver : ¢, =0.3 ;¢8,=0.8; e, =0.04

=-281W

Consider all resistances (surface resistances and space resistances) per unit surface area.
For steady state heat flow,

By, — By, By, — By,

ETEIERE
€9 €3 €3 €9

['.' Al = A2 = A3 = 1m2 and F1_3,F3_2 = 1]

Radiation
shield
£ &ll& €
LJ . LA
Ep, 4, Jg [ gy Jy Es,
O W —O— WV ——O— AW —O— W —O—WWWW—O—www——O
1-¢, 1 1-¢g; 1—gq 1 1-¢,
Asgy AvFis Aszg Agty AyFsp AsE;
Fig. 15,57
s -TY o' -TY
or 1 1 . 1.1
—+—-1 —+—-1
£ €3 £3 €9
rt-nt | LT
1
or i + 1 1 -+ L —
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or

or

or

or

Rl R Y
27.33 25.25
=108 (Ty* - ") = 1.08 T3* — 1.08 T
2.08 ;*=T\* + 1.08 T*
s 1

L= 568 (Ty* + 108 Ty*) = 048 (T)* + 1.08 Ty1) i)

©,, (heat flow without shield)

_S =B oMt - o - T

= = i)
R T 3.58
€ Eq9 0.3 0.8

Q13 (heat ﬂOW With Shield)
o' -TY) o' -TYH o -Th

= - . (I
Lyl L1 47 2733
£y Ea 0.3 0.4

Percentage reduction in heat flow due to shield

_ Q1 - Qi

Q@2

o1& _, o' -Ty'ye733

Q@ ST} - T,*)/3.58

. 358 [T;‘ - T;}

2733 | 1 -1yt
[ d 4 4
-0, .08 T
C1_os | B 048(Ty! + 108 T;%)
L I -1,
[T — 048 Ty* + 0.52 T,

=1-0.131 R

L n'-%n
[0.52(7* - 1
=1-0.131 __(W

=1-0.131 x 0.52 = 0.932 or 93.2%. (Ans.)

Heat transfer may be defined as the transmission of energy from one region to another as a result of
temperature gradient and it takes place by three modes : conduction, convection and radiation.
dt

Fourier’s law of conduction : @ = — kA a

where, € = Heat flow through a body per unit time,

A = Surface area of heat flow (perpendicular to the direction of flow),
dt = Temperature difference,
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dx = Thickness of body in the direction of flow, and
k = Thermal conductivity of the body.
Conduction of heat flow through slabs :

Ay - 1)

Q= —2"2 _ .
[11_+§a+x_s]
ki kB

Conduction of heat flow through pipe walls and lagging :
{ty - 19)
11 m|
| 210 2
2nl [k Oe q}
Conduction of heat through a hollow sphere :
h-b
Q=7 "%
n-n
4dnkrim
Heat transfer by convection :

Q=hAlt ~t).
Overall heat transfer co-efficient ;

Q=

1
N NI S
Fng ko ke
Heat transfer between two fluids separated by the walls of a composite tube of solid material :
= 1| 1 1 (thf_Cf)l "
——|——+—log —’Z+—log =+
2rL L’W By fn ke Cm mhy

A heat exchanger may be defined as an equipment which transfers the energy from a hot fluid to a cold
fluid, with maximum rate and minimum investment and running cost,

The net heat transfer in case of grey bodies with emissivities ¢, and ¢, is given by :
_ AT -TyY)

€ £

In case of concentric or long co-axial cylinder,

Q@

A]_O' (T14 - T24)

_].L+ﬂ _1__1
e Apléeg

OBJECTIVE TYPE QUESTIONS

Q=

Choose the Correct Answer :
The Fourier’s law of heat transfer by conduction is expressed as

dt dt

— hAZ _ il

(a) @ = kA . (b)Q_.kAE
dx dx

o R2A =2 _ p3a 2%
(c) @ =k’A ar d@=FA ar -
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w -

The heat transfer is constant when

(a) temperature remains constant with time (b) temperature decreases with time
(¢} temperature increases with time (d) any of these.

The co-efficient of thermal conductivity is defined as

{a) Quantity of heat transfer per unit area per one degree drop in temperature

(b) Quantity of heat tranafer per one degree temperature drop per unit area

(¢} Quantity of heat transfer per unit time per unit area

{d) Quantity of heat transfer per unit time per unit area per one degree temperature drop per unit
length.
The thermal conduectivity is expressed as

{a) WimK (b) Wim*K
(¢) W/hmK () Whim?K.
Heat transfer from higher temperature to low temperature takes place according to
(a) Fourier law (b) First law of thermodynamics
{c) Second law of thermodynamics (d) Zeroth law of thermodynamics.
Conduction through flat composite wall is given by :
_ t]_ - t4 _ tl - t4
S NI ©Q=Ha kA HA
hA kA k3A X1 Xg X3
MA kA A
(11— tA o % xp
=y (d) =
©Q ko by ks @ (t —ty)
Xy Xz X3

where @) = heat transfer, ¢ , t,, ¢, and{, temperatures on surfaces of composite wall,x,, x,, x,, x, thicknesses

of different composite wall layers.
Conduction through hollow, radial one dimensional heat transfer is expressed as

2nL{ty - ta)k 2nl(t; - ty)
= e — b = T Al
(a) @ Tog, o/ & Q e
2rLlog, (ti/t) 2nl (¢ - to)k
= — d = T e
) q (g — )k dr @ Tog, m/m

The radial heat transfer rate through hollow cylinder increases as the ratio of outer radius to inner
radius

{a) decreases (b) increases
(c) constant (d) none of the above.
Stefan-Boltzmann law is expressed as
(@) @ =0 AT (b) @ = o A2T*
() @ =cAT? (dy @ =AT.
The quantity of heat radiation is dependent on
(a) area of the body only (b) shape of the body only
(¢} temperature of the body only (d) on all (@), (b) and (c).
ANSWERS
()] 2. (@ 3. @ 4. (a} 5. (¢} 6. (a) 7. (a)

(a) 9, (a) 10. (o).
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THEORETICAL QUESTIONS

Enumerate the three modes by which heat can be transferred from one place to another. Which is the
slowest of all ?

How do you define the thermal conductivity of a material ?

What do you understand by the terms ‘convective heat transfer co-efficient’ and ‘overall heat transfer
co-efficient’.

Derive an expression for heat loss in kJ/m®hr through a composite wall of layers (i) without considering
convective heat transfer co-efficients and (i} considering the convective heat transfer co-efficients.
Classify the heat exchangers according to the flow directions of fluid and give few examples of each in
actual field of application.

Prove that the mean temperature difference in a parallel-flow heat exchanger is given by

t -t
LMTD (t,) = L=

log, -1
Oge tg

UNSOLVED EXAMPLES

The inner surface of a plane brick wall is at 40°C and the outer surface is at 20°C. Calculate the rate of
heat transfer per m? of surface area of the wall, which is 250 mm thick. The thermal conductivity of the
brick is 0.52 W/mK. [Ans. 41.6 W/m?
Determine the rate of heat flow through the boiler wall made of 2 em thick steel and covered with an
insulating material of 0.5 cm thick. The temperatures at the inner and outer surfaces of the wall are
300°C and 50°C respectively.
k (steel) = 58 W/mK

k (insulation) = 0.116 W/mK. [Ans. 5.8 kW/m?]
A mild steel tank of wall thickness 10 mm contains water at 90°C. Calculate the rate of heat loss per m?®
of tank surface area when the atmospheric temperature is 15°C. The thermal conductivity of mild steel
ig 50 W/mK, and the heat transfer co-efficients for inside and outside the tank are 2800 and 11 W/m® K,
respectively. Calculate also the temperature of the outside surface of the tank.

[Ans. 820 W/m?, 89.6°C]

A cold storage room has walls made of 0.23 m of brick on the outside, 0.08 m of plastic foam, and finally
15 mm of wood on the inside. The outside and inside air temperatures are 22°C and — 2°C respectively.
If the inside and outside heat transfer co-efficients are respectively 29 and 12 W/m? K and the thermal
conductivities of brick, foam and wood are 0.98, 0.02 and 0.17 W/mK respectively determine (i) the rate
of heat removal by refrigeration if the total wall area is 90 m?, and (i) the temperature of the inside
surface of the brick. [Ans. () 486.4 W, (i} 20.28°C]
The wall of a refrigerated van is of 1.5 mm of steel sheet at outer surface, 10 mm plywood at the inner
surface and 2 cm of glasswool in between. Calculate the rate of heat flow, if the temperatures of the
inside and outside surfaces are - 15°C and 24°C.
Take : k (steel) = 23.2 W/mK, k (glass-wool) = 0.014 W/mK
and k (plywood) = 0.052 W/mK. [Ans, 6§ kW/m?]
Sheets of brass and steel, each 10 mm thick, are placed in contact. The outer surface of brass is kept at
100°C and outer surface of steel is kept at 0°C. What is the temperature of the commeon interface ? The
thermal conductivities of brass and steel are in the ratio of 2 : 1. [Ans. 66.7°C]
The wall of a furnace is made up of 250 mm of fire brick, £ = 1.05 W/mK ; 120 mm of insulation brick,
k = 0.85 W/mEK, and 200 mm of red brick, k& = 0.85 W/mK. The inner and outer surface temperatures of
the walls are 850°C and 65°C respectively. Calculate the temperatures at the contact surfaces.
Neglect the resistance of mortar joints. [Ans. 703°C, 210°C)
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Calculate the heat flowing through a furnace wall 0.23 m thick, the inside and outside surface tempera-
tures of which are 1000°C and 200°C respectively. Assume that the mean thermal conductivity of the
wall material is 1.1 W/mK. Assuming that 7 mm of insulation (% = 0.075 W/mK) is added to the outside
surface of the wall and reduces the heat loss 20% ; caleulate the outside surface temperature of the wall.
If the cost of the insulation is Rs. 70 per sq m what time will be required to pay for the insulation ? Base
the calculations on the 24 hours operation per day and 199 days per year, Heat energy may be valued at
Rs. 10 per 1000 kWh. [Ans. 3826 W/h-m? ; 74.3°C ; 1.916 years]
A flat wall of a furnace is composed of two layers of different materials having thicknesses of 0.115 m
and 0.6 m with thermal conductivities of 0.16 W/m K and 10.6 W/m K respectively. If 1 kWrh of heat
passes through every sq m area, estimate the drop in temperature at the contact between the two walls.
The temperature inside the furnace is 1000°C and that at outside layer is 150°C. (Ans. 74°C}
A furnace wall consists of 250 mm fire brick, 125 mm insulating brick, and 256 mm building brick. The
inside wall is at temperature of 600°C and the atmospheric temperature is 20°C. Caleulate the heat loss
per m? of wall area and the temperature of the outside wall surface of the furnace. The heat transfer co-
efficient for the outside surface is 10 W/m? K, and the thermal conductivities of the fire brick, insulating
brick and building brick are 1.4, 0.2 and 0.7 Wm K respectively.

Neglect radiation. [Ans. 0.46 kW/m? ; 66°C]

Hot air at a temperature of 60°C is flowing through a steel pipe of 100 mm diameter. The pipe is covered
with two layers of different insulating materiais of thicknesses 50 mm and 30 mm, and their corre-
sponding thermal conductivities are 0.23 and 0.37 W/m K. The inside and outside heat transfer co-
efficients are 58 and 12 W/m? K. The atmosphere is at 25°C. Find the rate of heat loss from a 50 m length
of pipe. Neglect the resistance of the ateel pipe. [Ans. 2.334 kW]

A steel pipe of 100 mm bore and 7 mm wall thickness, carrying steam at 260°C, is insulated with 40 mm
of a high temperature diatomaceous earth covering, This covering is in turn insulated with 60 mm of
asbestos felt. If the atmospheric temperature is 15°C, caleulate the rate at which heat is lost by the
steam per m length of the pipe. The heat transfer co-efficients for the inside and outside surfaces are
550 and 15 W/m? K, respectively and the thermal conductivities of steel, diatomaceous earth and asbestos
felt are 50, 10.09 and 0.07 W/m K respectively. Calculate also the temperature of the outside surface.
[Ans. 116 W ; 22.8°C]
A 250 mm steam main, 225 metres long is covered with 50 mm of high temperature insulation
(k = 0.095 W/m K) and 40 mm of low temperature insulation (¢ = 0.065 W/m K). The inner and outer
surface temperatures as measured are 400°C and 50°C respectively. Caiculate :
(i} The total heat loss per hour.

(i) The total heat loss per m?* of outer surface.
(iif) The heat loss per m? of pipe surface.
(iv) The temperature between the two layers of insulation.
Neglect heat conduction through pipe material.

[Ans. (i) 265514 kJ/h, (i) 873.5 kd/h, (iii) 1502.5 kd/h, (iv) 215°C]
A steam pipe of 160 mm inside diameter and 170 mm outside diameter (¢ = 58 W/m K) is covered with
first layer of insulating material of 30 mm thickness (¢ = 0.17 W/m K) and second layer of insulating
material of 50 mm thickness (£ = 0.093 W/m K). The temperature of steam passing through the pipe is
300°C and ambient air temperature surrounding the pipe is 30°C. Taking inner and outer heat transfer
co-efficients 30 and 5.8 W/m? K respectively, find the heat lost per metre length of pipe.

[Ans. 216 W/m]

A small hemispherical oven is built of an inner layer of insulating fire brick 125 mm thick, and an outer
covering of 85% magnesia 40 mm thick. The inner surface of the oven is at 800°C and the heat transfer
co-efficient for the outside surface is 10 W/m? K, the room temperature is 20°C. Calculate the heat loss
through the hemisphere if the inside radius is 0.6 m. Take the thermal eonductivities of fire brick and
85% magnesia as 0.31 and 0.05 W/mK, respectively. [Ans. 1.93 kW]
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A spherical shaped vessel of 1.2 m diameter is 100 mm thick. Find the rate of heat leakage, if the
temperature difference between the inner and outer surfaces is 200°C. Thermal conductivity of the
material is 0.3 kJ/m-h-°C. [Ans. 2262 kJ/h]
Exhaust gases flowing through a tubular heat exchanger at the rate of 0.3 kg/s are cooled from 400°C to
120°C by water initially at 10°C. The specific heat of exhaust gases and water may be taken as 1.13 and
4.19 kJ/kg K respectively, and overall heat transfer co-efficient from gases to water is 140 W/m? K
Calculate the surface area required when the cooling water flow is 0.4 ke/s.

(i) For parallel-flow ; (if) For counter-flow. [Ans. (i) 4.0 m?, (5} 3.37 m?]
Water flows inside a tube 50 mm in diameter and 3 m long at a velocity of 0.8 m/s. Determine the heat
transfer co-efficient and the rate of heat transfer if the mean water temperature is 50°C and the wall is
isothermal at 70°C. For water at 60°C, take k = 0.66 W/m K, v (kinematic viscosity} = 0.478 x 10-* m%s,
and Prandtl number = 2.98. [Ans. 4075 W/m*K ; 38.39 kW]
Liquid air at — 153°C is stored in the space of two concentric spheres of 21 cm and 30 cm diameters. The
surface emissivities are 0.03. Assume the outer surface temperature is 27°C. Considering only radiation
heat transfer and taking the latent heat of liquid air of 209 kJ/kg, find the rate of evaporation. Take
o = 2.04 x 10 kd/h-m? K*, [Ans. 21.7 kg/h]
A body at 1100°C in black surroundings at 550°C has an emissivity of 0.4 at 1100°C and an emissivity of
0.7 at 550°C. Calculate the ratio of heat loas by radiation per m?,

(i) when the body is assumed to be grey withe=0.4
(if) when the body is not grey. [Ans, (£) 70.22 kW, (i) 62.42 kW]
A long steel rod, 20 mm in diameter, is to be heated from 427°C to 538°C. It is placed concentrically in
a long cylindrical furnace which has an inside diameter of 160 mm. The inner gurface of the farnace is
at a temperature of 1093°C, and has an emissivity of 0.85, If the surface of the tod has an emissivity of
0.6, find the time required for the heating operation.

Take for steel : p = 7845 kg/m® and ¢ = 0.67 kJ/kg K. [Ans. 29.88 s]



